1.Changes in the sagittal plane spinal alignment at the time of the cross-leg sitting position
Yukio Urabe ; Hiroshi Shinohara ; Takuya Takeuchi ; Shogo Tsutsumi
Japanese Journal of Physical Fitness and Sports Medicine 2017;66(5):363-367
Cross-leg sitting is locus posture performed well in Asian area, and a lifestyle and culture are thought to affect it. It is usually essential to cross-leg sitting carried out in the case of Zen meditation to maintain cross-leg sitting locus in a relaxed state to perform locus posture in floor, and to perform it in hip joint flexion of bilateral feet, abduction, and lateral rotation position in the meditation for a long time. The spinal column of cross-leg sitting was intended that aligning it confirmed backbone in lumbar vertebrae being displaced than rest standing position in the kyphosis direction or raising a bearing surface whether aligning it changed into lordotic projection from the lumbar vertebrae kyphosis direction. The thoracic vertebra angle and the lumbar vertebrae angle measured it using SpinalMouse®. We decided to measure a thoracic vertebra angle, a lumbar vertebrae angle when we changed the height of the target rest standing position and the bearing surface of cross-leg sitting. The thoracic vertebra angle did not change by raising the bearing surface of cross-leg sitting, however the lumbar vertebrae angle changed. It showed a significant correlation between hip joint flexion, abduction, an external rotation angles and the change of the lumbar vertebrae angle. Results of this study suggested that lumbar, aligning it changed to lordosis in the high cross-leg sitting thing that we changed. The quantity that aligning it biases into lordosis of the lumbar part is related to the flexion of the hip joint, abduction, external rotation flexibility.
2.Washout-parametric imaging with Sonazoid for enhanced differentiation of focal liver lesions
Tatsuya KAKEGAWA ; Katsutoshi SUGIMOTO ; Naohisa KAMIYAMA ; Hiroshi HASHIMOTO ; Hiroshi TAKAHASHI ; Takuya WADA ; Yu YOSHIMASU ; Hirohito TAKEUCHI ; Ryohei NAKAYAMA ; Kentaro SAKAMAKI ; Takao ITOI
Ultrasonography 2024;43(6):457-468
Purpose:
The study aimed to compare the diagnostic performance of washout-parametric imaging (WOPI) with that of conventional contrast-enhanced ultrasound (cCEUS) in differentiating focal liver lesions (FLLs).
Methods:
A total of 181 FLLs were imaged with contrast-enhanced ultrasound using Sonazoid, and the recordings were captured for 10 minutes in a prospective setting. WOPI was constructed from three images, depicting the arterial phase (peak enhancement), the early portal venous phase (1-minute post-injection), and the vasculo-Kupffer phase (5 or 10 minutes post-injection). The intensity variations in these images were color-coded and superimposed to produce a single image representing the washout timing across the lesions. From the 181 FLLs, 30 hepatocellular carcinomas (HCCs), 30 non-HCC malignancies, and 30 benign lesions were randomly selected for an observer study. Both techniques (cCEUS and WOPI) were evaluated by four off-site readers. They classified each lesion as benign or malignant using a continuous rating scale, with the endpoints representing "definitely benign" and "definitely malignant." The diagnostic performance of cCEUS and WOPI was compared using the area under the receiver operating characteristic curve (AUC) with the DeLong test. Interobserver agreement was assessed using the intraclass correlation coefficient (ICC).
Results:
The difference in average AUC values between WOPI and cCEUS was 0.0062 (95% confidence interval, -0.0161 to 0.0285), indicating no significant difference between techniques. The interobserver agreement was higher for WOPI (ICC, 0.77) than cCEUS (ICC, 0.67).
Conclusion
The diagnostic performance of WOPI is comparable to that of cCEUS in differentiating FLLs, with superior interobserver agreement.
3.Washout-parametric imaging with Sonazoid for enhanced differentiation of focal liver lesions
Tatsuya KAKEGAWA ; Katsutoshi SUGIMOTO ; Naohisa KAMIYAMA ; Hiroshi HASHIMOTO ; Hiroshi TAKAHASHI ; Takuya WADA ; Yu YOSHIMASU ; Hirohito TAKEUCHI ; Ryohei NAKAYAMA ; Kentaro SAKAMAKI ; Takao ITOI
Ultrasonography 2024;43(6):457-468
Purpose:
The study aimed to compare the diagnostic performance of washout-parametric imaging (WOPI) with that of conventional contrast-enhanced ultrasound (cCEUS) in differentiating focal liver lesions (FLLs).
Methods:
A total of 181 FLLs were imaged with contrast-enhanced ultrasound using Sonazoid, and the recordings were captured for 10 minutes in a prospective setting. WOPI was constructed from three images, depicting the arterial phase (peak enhancement), the early portal venous phase (1-minute post-injection), and the vasculo-Kupffer phase (5 or 10 minutes post-injection). The intensity variations in these images were color-coded and superimposed to produce a single image representing the washout timing across the lesions. From the 181 FLLs, 30 hepatocellular carcinomas (HCCs), 30 non-HCC malignancies, and 30 benign lesions were randomly selected for an observer study. Both techniques (cCEUS and WOPI) were evaluated by four off-site readers. They classified each lesion as benign or malignant using a continuous rating scale, with the endpoints representing "definitely benign" and "definitely malignant." The diagnostic performance of cCEUS and WOPI was compared using the area under the receiver operating characteristic curve (AUC) with the DeLong test. Interobserver agreement was assessed using the intraclass correlation coefficient (ICC).
Results:
The difference in average AUC values between WOPI and cCEUS was 0.0062 (95% confidence interval, -0.0161 to 0.0285), indicating no significant difference between techniques. The interobserver agreement was higher for WOPI (ICC, 0.77) than cCEUS (ICC, 0.67).
Conclusion
The diagnostic performance of WOPI is comparable to that of cCEUS in differentiating FLLs, with superior interobserver agreement.
4.Washout-parametric imaging with Sonazoid for enhanced differentiation of focal liver lesions
Tatsuya KAKEGAWA ; Katsutoshi SUGIMOTO ; Naohisa KAMIYAMA ; Hiroshi HASHIMOTO ; Hiroshi TAKAHASHI ; Takuya WADA ; Yu YOSHIMASU ; Hirohito TAKEUCHI ; Ryohei NAKAYAMA ; Kentaro SAKAMAKI ; Takao ITOI
Ultrasonography 2024;43(6):457-468
Purpose:
The study aimed to compare the diagnostic performance of washout-parametric imaging (WOPI) with that of conventional contrast-enhanced ultrasound (cCEUS) in differentiating focal liver lesions (FLLs).
Methods:
A total of 181 FLLs were imaged with contrast-enhanced ultrasound using Sonazoid, and the recordings were captured for 10 minutes in a prospective setting. WOPI was constructed from three images, depicting the arterial phase (peak enhancement), the early portal venous phase (1-minute post-injection), and the vasculo-Kupffer phase (5 or 10 minutes post-injection). The intensity variations in these images were color-coded and superimposed to produce a single image representing the washout timing across the lesions. From the 181 FLLs, 30 hepatocellular carcinomas (HCCs), 30 non-HCC malignancies, and 30 benign lesions were randomly selected for an observer study. Both techniques (cCEUS and WOPI) were evaluated by four off-site readers. They classified each lesion as benign or malignant using a continuous rating scale, with the endpoints representing "definitely benign" and "definitely malignant." The diagnostic performance of cCEUS and WOPI was compared using the area under the receiver operating characteristic curve (AUC) with the DeLong test. Interobserver agreement was assessed using the intraclass correlation coefficient (ICC).
Results:
The difference in average AUC values between WOPI and cCEUS was 0.0062 (95% confidence interval, -0.0161 to 0.0285), indicating no significant difference between techniques. The interobserver agreement was higher for WOPI (ICC, 0.77) than cCEUS (ICC, 0.67).
Conclusion
The diagnostic performance of WOPI is comparable to that of cCEUS in differentiating FLLs, with superior interobserver agreement.
5.Washout-parametric imaging with Sonazoid for enhanced differentiation of focal liver lesions
Tatsuya KAKEGAWA ; Katsutoshi SUGIMOTO ; Naohisa KAMIYAMA ; Hiroshi HASHIMOTO ; Hiroshi TAKAHASHI ; Takuya WADA ; Yu YOSHIMASU ; Hirohito TAKEUCHI ; Ryohei NAKAYAMA ; Kentaro SAKAMAKI ; Takao ITOI
Ultrasonography 2024;43(6):457-468
Purpose:
The study aimed to compare the diagnostic performance of washout-parametric imaging (WOPI) with that of conventional contrast-enhanced ultrasound (cCEUS) in differentiating focal liver lesions (FLLs).
Methods:
A total of 181 FLLs were imaged with contrast-enhanced ultrasound using Sonazoid, and the recordings were captured for 10 minutes in a prospective setting. WOPI was constructed from three images, depicting the arterial phase (peak enhancement), the early portal venous phase (1-minute post-injection), and the vasculo-Kupffer phase (5 or 10 minutes post-injection). The intensity variations in these images were color-coded and superimposed to produce a single image representing the washout timing across the lesions. From the 181 FLLs, 30 hepatocellular carcinomas (HCCs), 30 non-HCC malignancies, and 30 benign lesions were randomly selected for an observer study. Both techniques (cCEUS and WOPI) were evaluated by four off-site readers. They classified each lesion as benign or malignant using a continuous rating scale, with the endpoints representing "definitely benign" and "definitely malignant." The diagnostic performance of cCEUS and WOPI was compared using the area under the receiver operating characteristic curve (AUC) with the DeLong test. Interobserver agreement was assessed using the intraclass correlation coefficient (ICC).
Results:
The difference in average AUC values between WOPI and cCEUS was 0.0062 (95% confidence interval, -0.0161 to 0.0285), indicating no significant difference between techniques. The interobserver agreement was higher for WOPI (ICC, 0.77) than cCEUS (ICC, 0.67).
Conclusion
The diagnostic performance of WOPI is comparable to that of cCEUS in differentiating FLLs, with superior interobserver agreement.
6.Washout-parametric imaging with Sonazoid for enhanced differentiation of focal liver lesions
Tatsuya KAKEGAWA ; Katsutoshi SUGIMOTO ; Naohisa KAMIYAMA ; Hiroshi HASHIMOTO ; Hiroshi TAKAHASHI ; Takuya WADA ; Yu YOSHIMASU ; Hirohito TAKEUCHI ; Ryohei NAKAYAMA ; Kentaro SAKAMAKI ; Takao ITOI
Ultrasonography 2024;43(6):457-468
Purpose:
The study aimed to compare the diagnostic performance of washout-parametric imaging (WOPI) with that of conventional contrast-enhanced ultrasound (cCEUS) in differentiating focal liver lesions (FLLs).
Methods:
A total of 181 FLLs were imaged with contrast-enhanced ultrasound using Sonazoid, and the recordings were captured for 10 minutes in a prospective setting. WOPI was constructed from three images, depicting the arterial phase (peak enhancement), the early portal venous phase (1-minute post-injection), and the vasculo-Kupffer phase (5 or 10 minutes post-injection). The intensity variations in these images were color-coded and superimposed to produce a single image representing the washout timing across the lesions. From the 181 FLLs, 30 hepatocellular carcinomas (HCCs), 30 non-HCC malignancies, and 30 benign lesions were randomly selected for an observer study. Both techniques (cCEUS and WOPI) were evaluated by four off-site readers. They classified each lesion as benign or malignant using a continuous rating scale, with the endpoints representing "definitely benign" and "definitely malignant." The diagnostic performance of cCEUS and WOPI was compared using the area under the receiver operating characteristic curve (AUC) with the DeLong test. Interobserver agreement was assessed using the intraclass correlation coefficient (ICC).
Results:
The difference in average AUC values between WOPI and cCEUS was 0.0062 (95% confidence interval, -0.0161 to 0.0285), indicating no significant difference between techniques. The interobserver agreement was higher for WOPI (ICC, 0.77) than cCEUS (ICC, 0.67).
Conclusion
The diagnostic performance of WOPI is comparable to that of cCEUS in differentiating FLLs, with superior interobserver agreement.