1.Trichinella spiralis: RNAi-mediated silencing of serine protease results in reduction of intrusion, development and fecundity
Yang, D.Q. ; Zeng, J. ; Sun, X.Y. ; Yue, X. ; Hu, C.X. ; Jiang, P. ; Liu, R.D. ; Cui, J. ; Wang, Z.Q.
Tropical Biomedicine 2020;37(No.4):932-946
In previous studies, a Trichinella spiralis serine protease (TsSP) was identified in
excretion/secretion (ES) products from intestinal infective L1 larvae (IIL1) using
immunoproteomics. The complete cDNA sequence of TsSP gene was 1372 bp, which encoded
429 amino acids with 47.55 kDa. The TsSP was transcribed and expressed at all T. spiralis life
cycle phases, as well as mainly located at the cuticle and stichosome of the parasitic nematode.
Recombinant TsSP bind to intestinal epithelial cells (IEC) and promoted larva invasion, however,
its exact function in invasion, development and reproduction are still unknown. The aim of
this study was to confirm the biological function of TsSP during T. spiralis invasion and
growth using RNA interference (RNAi) technology. The results showed that on 1 day after
electroporation using 2.5 µM siRNA156, TsSP mRNA and protein expression of muscle larvae
(ML) was suppressed by 48.35 and 59.98%, respectively. Meanwhile, silencing of TsSP gene
by RNAi resulted in a 61.38% decrease of serine protease activity of ML ES proteins, and a
significant reduction of the in vitro and in vivo invasive capacity of IIL1 to intrude into the
IEC monolayer and intestinal mucosa. When mice were infected with siRNA 156-transfected
larvae, adult worm and muscle larva burdens were decreased by 58.85 and 60.48%,
respectively. Moreover, intestinal worm growth and female fecundity were evidently inhibited
after TsSP gene was knockdown, it was demonstrated that intestinal adults became smaller
and the in vitro newborn larval yield of females obviously declined compared with the
control siRNA group. The results indicated that knockdown of TsSP gene by RNAi significantly
reduced the TsSP expression and enzymatic activity, impaired larvae intrusion and growth,
and lowered the female reproductive capacity, further verified that TsSP might participate in
diverse processes of T. spiralis life cycle, it will be a new prospective candidate molecular
target of anti-Trichinella vaccines.
2.Molecular cloning and characterization of a novel aspartyl aminopeptidase from Trichinella spiralis
Sun, X.Y. ; Ma, K.N. ; Bai, Y. ; Liu, R.D. ; Long, S.R. ; Zhang, X. ; Jiang, P. ; Cui, J. ; Wang, Z.Q.
Tropical Biomedicine 2021;38(No.3):420-434
Trichinellosis is an important zoonotic parasitic disease worldwide and is principally caused by ingesting animal meat containing Trichinella infective larvae. Aspartyl aminopeptidase is an intracytoplasmic metalloproteinase that specifically hydrolyzes the N-terminus of polypeptides free of acidic amino acids (aspartic acid and glutamate), and plays an important role in the metabolism, growth and development of organisms. In this study, a novel T. spiralis aspartyl aminopeptidase (TsAAP) was cloned and expressed, and its biological properties and roles in worm growth and development were investigated. The results revealed that TsAAP transcription and expression in diverse T. spiralis stages were detected by RT-PCR and Western blotting, and primarily localized at cuticle, stichosome and intrauterine embryos of this nematode by immunofluorescence test. rTsAAP has the enzymatic activity of native AAP to hydrolyze the substrate H-Glu-pNA. There was a specific binding between rTsAAP and murine erythrocyte, and the binding site was localized in erythrocyte membrane proteins. Silencing of TsAAP gene by specific dsRNA significantly reduced the TsAAP expression, enzymatic activity, intestinal worm burdens and female fecundity. The results demonstrated that TsAAP participates in the growth, development and fecundity of T. spiralis and it might be a potential target molecule for anti-Trichinella vaccines.