1.Effects of Sisheng Decoction on spontaneous activity and serum concentration of malondialdehyde in mice with yin deficiency syndrome
Sufang ZHANG ; Zhe CHEN ; Bai LI ; Hongyun CHEN ; Changquan LING ; Xinyu WEN
Journal of Integrative Medicine 2008;6(10):1029-33
OBJECTIVE: To assess the therapeutic effects of Sisheng Decoction, a compound traditional Chinese herbal medicine, on a mouse model of yin deficiency syndrome induced by thyroid hormone, and to make the preliminary study on its mechanisms. METHODS: Simultaneous modeling and treatment were carried out. Sixty mice were randomly divided into six groups: normal group, yin deficiency model group, low-, medium- and high-dose Sisheng Decoction group and Shengmai oral liquid group. Normal group and yin deficiency model group were administered with double distilled water. Spontaneous activity and serum concentration of malondialdehyde in different groups were detected. RESULTS: The symptoms of yin deficiency syndrome such as xerostomia, dysphoria and fervescence were improved in the Sisheng Decoction groups. Compared with the yin deficiency model group, the spontaneous activity was increased and the serum concentration of malondialdehyde was decreased in the Sisheng Decoction groups (P<0.05). There was no significant difference between the Sisheng Decoction groups and the Shengmai oral liquid group (P<0.05). CONCLUSION: Medium- or high-dose Sisheng Decoction is effective for nourishing yin, clearing heat, engendering liquid and allaying thirst. The above effects of Sisheng Decoction may be realised by improving the spontaneous activity and resisting oxidative damage.
2.Applications of digital blood collection quality training modular in outpatient blood collection room
Guirong RONG ; Limin ZHAO ; Sufang WEN ; Yulan QIAN ; Jun YANG ; Ling ZHOU ; Binjin OU
Chinese Journal of Practical Nursing 2010;26(16):21-23
Objective To discuss training of the nurses in outpatient blood collection room with the digital training modular of blood sample collection to improve the quality of blood sample collection. Methods Nurses were trained with the digital training modular by multimedia,group discussion to impmve the quality of blood sample collection continuously. Results The unqualified blood sample rate in the same season after training were statistically different compared with that before training. Conclu-sions Training the nurses in outpatient blood collection room with the digital traimg modular of blood sample collection have actual direction value to improve the quality of blood sample collection.
3.Evaluation of outcome and cerebral protective effects for ketogenic diet therapy to status epilepticus
Jialun WEN ; Jianxiang LIAO ; Xianling MENG ; Sufang LIN ; Tieshuan HUANG ; Jinghua YE
Chinese Pediatric Emergency Medicine 2015;22(9):614-616
Objective To explore the efficacy of ketogenic diet( KD) in the treatment of status epi-lepticus( SE) and whether KD could protect the brain,and propose a new thought on SE patients′reasonably individualized treatment, brain protection and prognosis improvement. Methods From Sep 2013 to Jan 2015,all the patients diagnosed as SE were advised to apply KD treatment; the patients who refused KD treatment were included in the control group,while the patients who accepted KD treatment were included in the treatment group. Based on the SE treatment principles,the control group applied traditional anti-convulsive therapy,while the treatment group applied traditional therapy combined with KD treatment. Before the treat-ment and after the epilepsy control,the patients′ serum was collected to test neuron specific enolase( NSE) and S100βlevels,and the duration of epilepsy control was recorded. Results The treatment group included a total of 10 patients; 3 patients had a good efficacy and obtained seizure-free after the treatment; clinical seizures declined significantly in 6 patients. The treatment group′s overall response rate was 9/10,which was higher than that of the control group(5/8)(P<0. 01). The treatment group′s duration to gain efficacy was shorter than that of the control group[(5. 2 ± 2. 9) d vs. (9. 8 ± 1. 5) d,P<0. 01]. After the treatment,the patients′NSE and S100β in both groups were significantly decreased than those before the treatment ( P<0. 001 or P<0. 05). After the treatment,the serum NSE and S100β of the patients in the treatment group were lower than those in the control group,with statistically significant difference(P<0. 05). Conclusion Frequent epileptic seizures and SE would impair the patient′s brain. Controlling the epileptic seizures actively could lower the severity of brain injury. KD could effectively control the epileptic seizure and had neuropro-tective effects.
5.A phase II trial of cytoreductive surgery combined with niraparib maintenance in platinum-sensitive, secondary recurrent ovarian cancer: SGOG SOC-3 study
Tingyan SHI ; Sheng YIN ; Jianqing ZHU ; Ping ZHANG ; Jihong LIU ; Libing XIANG ; Yaping ZHU ; Sufang WU ; Xiaojun CHEN ; Xipeng WANG ; Yincheng TENG ; Tao ZHU ; Aijun YU ; Yingli ZHANG ; Yanling FENG ; He HUANG ; Wei BAO ; Yanli LI ; Wei JIANG ; Ping ZHANG ; Jiarui LI ; Zhihong AI ; Wei ZHANG ; Huixun JIA ; Yuqin ZHANG ; Rong JIANG ; Jiejie ZHANG ; Wen GAO ; Yuting LUAN ; Rongyu ZANG
Journal of Gynecologic Oncology 2020;31(3):e61-
Background:
In China, secondary cytoreductive surgery (SCR) has been widely used in ovarian cancer (OC) over the past two decades. Although Gynecologic Oncology Group-0213 trial did not show its overall survival benefit in first relapsed patients, the questions on patient selection and effect of subsequent targeting therapy are still open. The preliminary data from our pre-SOC1 phase II study showed that selected patients with second relapse who never received SCR at recurrence may still benefit from surgery. Moreover, poly(ADP-ribose) polymerase inhibitors (PARPi) maintenance now has been a standard care for platinum sensitive relapsed OC. To our knowledge, no published or ongoing trial is trying to answer the question if patient can benefit from a potentially complete resection combined with PARPi maintenance in OC patients with secondary recurrence.
Methods
SOC-3 is a multi-center, open, randomized, controlled, phase II trial of SCR followed by chemotherapy and niraparib maintenance vs chemotherapy and niraparib maintenance in patients with platinum-sensitive second relapsed OC who never received SCR at recurrence. To guarantee surgical quality, if the sites had no experience of participating in any OC-related surgical trials, the number of recurrent lesions evaluated by central-reviewed positron emission tomography–computed tomography image shouldn't be more than 3. Eligible patients are randomly assigned in a 1:1 ratio to receive either SCR followed by 6 cyclesof platinum-based chemotherapy and niraparib maintenance or 6 cycles of platinum-based chemotherapy and niraparib maintenance alone. Patients who undergo at least 4 cycles of chemotherapy and must be, in the opinion of the investigator, without disease progression, will be assigned niraparib maintenance. Major inclusion criteria are secondary relapsed OC with a platinum-free interval of no less than 6 months and a possibly complete resection. Major exclusion criteria are borderline tumors and non-epithelial ovarian malignancies, received debulking surgery at recurrence and impossible to complete resection. The sample size is 96 patients. Primary endpoint is 12-month non-progression rate.
6.Dynamic Monitoring and Analysis of Ammonia Concentration in Laboratory Animal Facilities Under Suspension of Heating Ventilation and Air Conditioning System
Qingzhen JIAO ; Guihua WU ; Wen TANG ; Fan FAN ; Kai FENG ; Chunxiang YANG ; Jian QIAO ; Sufang DENG
Laboratory Animal and Comparative Medicine 2025;45(4):490-495
ObjectiveTo monitor the real-time changes in ammonia concentration in the laboratory animal facility environment before, during, and after the air conditioning system stops supplying air, so as to provide a basis and reference for developing emergency plans for the shutdown of the air conditioning system. MethodsThe laboratory animal facilities of the Wuhan Institute of Biological Products were used as the research object. Ammonia concentration detectors were used to monitor ammonia concentration continuously in the environment of conventional rabbit production facility, SPF hamster production facility, and SPF guinea pig experimental facility before and after the passive shutdown due to repairs and active maintenance shutdown of the air conditioning system, as well as the time for the ammonia concentration to return to daily levels after resuming air supply. ResultsUnder both shutdown modes of the air conditioning system, the trend of ammonia concentration changes in different laboratory animal facilities was consistent, showing a rapid increase after shutdown and a rapid decrease after resuming air supply. Under active maintenance shutdown, the maximum ammonia concentrations in the conventional rabbit production facilities, SPF hamster production facilities, and SPF guinea pig experimental facilities were 9.81 mg/m³, 14.27 mg/m³, and 6.98 mg/m³, respectively. Within 12 minutes after resuming air supply, ammonia concentration could return to normal daily levels. Under passive long-term shutdown, ammonia concentration value was positively correlated with the duration of air supply suspension. As the shutdown duration increased, ammonia concentration continued to increase. The maximum ammonia concentration values in the three facilities occurred at 88 minutes (38.06 mg/m³), 40 minutes (18.43 mg/m³), and 34 minutes (15.61 mg/m³) after air supply suspension, respectively.Within 11 minutes after resuming air supply, ammonia concentration could return to normal daily levels. ConclusionShutdown of the air conditioning system causes a rapid increase in ammonia concentration in laboratory animal facilities, and the rise in ammonia concentration is positively correlated with the duration of air supply suspension. Therefore, when an emergency shutdown of the air-conditioning system is required due to maintenance or other reasons, backup fans should be provided in accordance with the requirements of GB 50447-2008 "Architectural and Technical Code for Laboratory Animal Facilities". Older facilities should make adequate preparations and develop a scientifically sound emergency plan.
7.Antimicrobial resistance profile of clinical isolates in hospitals across China: report from the CHINET Surveillance Program, 2017
Fupin HU ; Yan GUO ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Zhaoxia ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Aimin WANG ; Yuanhong XU ; Jilu SHEN ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Dawen GUO ; Jinying ZHAO ; Wenen LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Kaizhen WEN ; Yirong ZHANG ; Xuesong XU ; Chao YAN ; Hua YU ; Xiangning HUANG ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU
Chinese Journal of Infection and Chemotherapy 2018;18(3):241-251
Objective To investigate the antimicrobial resistance profile of the clinical isolates collected from selected hospitals across China. Methods Twenty-nine general hospitals and five children's hospitals were involved in this program. Antimicrobial susceptibility testing was carried out according to a unified protocol using Kirby-Bauer method or automated systems. Results were interpreted according to CLSI 2017 breakpoints. Results A total of 190 610 clinical isolates were collected from January to December 2017, of which gram negative organisms accounted for 70.8% (134 951/190 610) and gram positive cocci 29.2% (55 649/190 610). The prevalence of methicillin-resistant strains was 35.3% in S. aureus (MRSA) and 80.3% in coagulase negative Staphylococcus (MRCNS) on average. MR strains showed much higher resistance rates to most of the other antimicrobial agents than MS strains. However, 91.6% of MRSA strains were still susceptible to trimethoprim-sulfamethoxazole, while 86.2% of MRCNS strains were susceptible to rifampin. No staphylococcal strains were found resistant to vancomycin. E. faecalis strains showed much lower resistance rates to most of the drugs tested (except chloramphenicol) than E. faecium. Vancomycin-resistant Enterococcus (VRE) was identified in both E. faecalis and E. faecium. The identified VRE strains were mainly vanA, vanB or vanM type based on phenotype or genotype. The proportion of PSSP or PRSP strains in the non-meningitis S.pneumoniae strains isolated from children decreased but the proportion of PISP strains increased when compared to the data of 2016. Enterobacteriaceae strains were still highly susceptible to carbapenems. Overall, less than 10% of these strains (excluding Klebsiella spp.) were resistant to carbapenems. The prevalence of imipenem-resistant K. pneumoniae increased from 3.0% in 2005 to 20.9% in 2017, and meropenem-resistant K. pneumoniae increased from 2.9% in 2005 to 24.0% in 2017, more than 8-fold increase. About 66.7% and 69.3% of Acinetobacter (A. baumannii accounts for 91.5%) strains were resistant to imipenem and meropenem, respectively. Compared with the data of year 2016, P. aeruginosa strains showed decreasing resistance rate to carbapenems. Conclusions Bacterial resistance is still on the rise. It is necessary to strengthen hospital infection control and stewardship of antimicrobial agents. The communication between laboratorians and clinicians should be further improved in addition to surveillance of bacterial resistance.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.