1.Research progress of digital health intervention platforms for perinatal depression
SONG Zhen ; ZHANG Jiayi ; WU Dadong ; GONG Ni
Journal of Preventive Medicine 2025;37(9):907-912
Perinatal depression (PND) is a critical public health issue affecting maternal and offspring health. Digital health intervention platforms, leveraging advantages in accessibility, privacy, and cost-effectiveness, demonstrate good application in PND prevention and treatment. This review systematically searched literature and policy documents published between January 2018 and March 2025 in CNKI, PubMed, Web of Science and World Health Organization. It summarized the development trajectory of digital health intervention platforms and their current applications and effectiveness in PND prevention and treatment. Existing evidence was evaluated across dimensions of efficacy, systematicity, and practicality, identifying major challenges faced by these platforms. Studies indicate that while PND digital health intervention platforms have achieved preliminary success in alleviating PND symptoms, widespread issues persist, including incomplete service closed-loop systems, low user adherence, and insufficient sustainability. Future efforts should focus on optimizing intervention content and interactive design, advancing intelligent assessment and tiered intervention strategies, strengthening continuous monitoring and crisis response mechanisms, and constructing a multidisciplinary collaborative support system. These steps are essential for achieving efficient, intelligent, and sustainable development of digital health intervention platforms for PND.
3.Nano-drug delivery strategies affecting cancer-associated fibroblasts to reduce tumor metastasis.
Linghui ZOU ; Peng XIAN ; Qing PU ; Yangjie SONG ; Shuting NI ; Lei CHEN ; Kaili HU
Acta Pharmaceutica Sinica B 2025;15(4):1841-1868
Tumor metastasis is the leading cause of high mortality in most cancers, and numerous studies have demonstrated that the malignant crosstalk of multiple components in the tumor microenvironment (TME) together promotes tumor metastasis. Cancer-associated fibroblasts (CAFs) are the major stromal cells and crosstalk centers in the TME of various kinds of tumors, such as breast cancer, pancreatic cancer, and prostate cancer. Recently, the CAF-induced pro-tumor metastatic TME has gained wide attention, being considered as one of the effective targets for tumor therapy. With in-depth research, CAFs have been found to promote tumor metastasis through multiple mechanisms, such as inducing epithelial-mesenchymal transition in tumor cells, remodeling the extracellular matrix, protecting circulating tumor cells, and facilitating the formation of a pre-metastatic niche. To enhance the anti-tumor metastasis effect, therapeutic strategies designed by combining nano-drug delivery systems with CAF modulation are undoubtedly a desirable choice, as evidenced by the research over the past decades. Herein, we introduce the physiological properties of CAFs, detail the possible mechanisms whereby CAFs promote tumor metastasis, categorize CAFs-based nano-drug delivery strategies according to their anti-metastasis functions and discuss the current challenges, possible solutions, as well as the future directions in order to provide a theoretical basis and reference for the utilization of CAFs-based nano-drug delivery strategies to promote tumor metastasis therapy.
4.Cancer-Associated Fibroblasts Interact with Schwann Cells for Tumor Perineural Invasion by Oral Squamous Cell Carcinoma.
Xinwen ZHANG ; Yijia HE ; Shixin XIE ; Yuxian SONG ; Xiaofeng HUANG ; Qingang HU ; Yanhong NI ; Yi WANG ; Yong FU ; Liang DING
Neuroscience Bulletin 2025;41(6):1003-1020
Perineural invasion (PNI) by tumor cells is a key phenotype of highly-invasive oral squamous cell carcinoma (OSCC). Since Schwann cells (SCs) and fibroblasts maintain the physiological homeostasis of the peripheral nervous system, and we have focused on cancer-associated fibroblasts (CAFs) for decades, it's imperative to elucidate the impact of CAFs on SCs in PNI+ OSCCs. We describe a disease progression-driven shift of PNI- towards PNI+ during the progression of early-stage OSCC (31%, n = 125) to late-stage OSCC (53%, n = 97), characterized by abundant CAFs and nerve demyelination. CAFs inhibited SC proliferation/migration and reduced neurotrophic factors and myelin in vitro, and this involved up-regulated ER stress and decreased MAPK signals. Moreover, CAFs also aggravated the paralysis of the hind limb and PNI in vivo. Unexpectedly, leukemia inhibitory factor (LIF) was exclusively expressed on CAFs and up-regulated in metastatic OSCC. The LIF inhibitor EC330 restored CAF-induced SC inactivation. Thus, OSCC-derived CAFs inactivate SCs to aggravate nerve injury and PNI development.
Schwann Cells/metabolism*
;
Mouth Neoplasms/metabolism*
;
Humans
;
Cancer-Associated Fibroblasts/metabolism*
;
Animals
;
Carcinoma, Squamous Cell/metabolism*
;
Neoplasm Invasiveness/pathology*
;
Male
;
Female
;
Mice
;
Cell Movement/physiology*
;
Cell Proliferation/physiology*
;
Cell Line, Tumor
;
Leukemia Inhibitory Factor/metabolism*
;
Middle Aged
5.Microbiome, metabolome, and transcriptome analyses in esophageal squamous cell carcinoma: insights into immune modulation by F. nucleatum.
Xue ZHANG ; Jing HAN ; Yudong WANG ; Li FENG ; Zhisong FAN ; Yu SU ; Wenya SONG ; Lan WANG ; Long WANG ; Hui JIN ; Jiayin LIU ; Dan LI ; Guiying LI ; Yan LIU ; Jing ZUO ; Zhiyu NI
Protein & Cell 2025;16(6):491-496
6.Stem-leaf saponins of Panax notoginseng attenuate experimental Parkinson's disease progression in mice by inhibiting microglia-mediated neuroinflammation via P2Y2R/PI3K/AKT/NFκB signaling pathway.
Hui WU ; Chenyang NI ; Yu ZHANG ; Yingying SONG ; Longchan LIU ; Fei HUANG ; Hailian SHI ; Zhengtao WANG ; Xiaojun WU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):43-53
Stem-leaf saponins from Panax notoginseng (SLSP) comprise numerous PPD-type saponins with diverse pharmacological properties; however, their role in Parkinson's disease (PD), characterized by microglia-mediated neuroinflammation, remains unclear. This study evaluated the effects of SLSP on suppressing microglia-driven neuroinflammation in experimental PD models, including the 1-methyl-4-phenylpyridinium (MPTP)-induced mouse model and lipopolysaccharide (LPS)-stimulated BV-2 microglia. Our findings revealed that SLSP mitigated behavioral impairments and excessive microglial activation in models of PD, including MPTP-treated mice. Additionally, SLSP inhibited the upregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) and attenuated the phosphorylation of PI3K, protein kinase B (AKT), nuclear factor-κB (NFκB), and inhibitor of NFκB protein α (IκBα) both in vivo and in vitro. Moreover, SLSP suppressed the production of inflammatory markers such as interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α) in LPS-stimulated BV-2 cells. Notably, the P2Y2R agonist partially reversed the inhibitory effects of SLSP in LPS-treated BV-2 cells. These results suggest that SLSP inhibit microglia-mediated neuroinflammation in experimental PD models, likely through the P2Y2R/PI3K/AKT/NFκB signaling pathway. These novel findings indicate that SLSP may offer therapeutic potential for PD by attenuating microglia-mediated neuroinflammation.
Animals
;
Panax notoginseng/chemistry*
;
Saponins/pharmacology*
;
Microglia/immunology*
;
Mice
;
NF-kappa B/immunology*
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/immunology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Male
;
Parkinson Disease/immunology*
;
Mice, Inbred C57BL
;
Disease Models, Animal
;
Plant Leaves/chemistry*
;
Neuroinflammatory Diseases/drug therapy*
;
Humans
7.Effects of Hot Night Exposure on Human Semen Quality: A Multicenter Population-Based Study.
Ting Ting DAI ; Ting XU ; Qi Ling WANG ; Hao Bo NI ; Chun Ying SONG ; Yu Shan LI ; Fu Ping LI ; Tian Qing MENG ; Hui Qiang SHENG ; Ling Xi WANG ; Xiao Yan CAI ; Li Na XIAO ; Xiao Lin YU ; Qing Hui ZENG ; Pi GUO ; Xin Zong ZHANG
Biomedical and Environmental Sciences 2025;38(2):178-193
OBJECTIVE:
To explore and quantify the association of hot night exposure during the sperm development period (0-90 lag days) with semen quality.
METHODS:
A total of 6,640 male sperm donors from 6 human sperm banks in China during 2014-2020 were recruited in this multicenter study. Two indices (i.e., hot night excess [HNE] and hot night duration [HND]) were used to estimate the heat intensity and duration during nighttime. Linear mixed models were used to examine the association between hot nights and semen quality parameters.
RESULTS:
The exposure-response relationship revealed that HNE and HND during 0-90 days before semen collection had a significantly inverse association with sperm motility. Specifically, a 1 °C increase in HNE was associated with decreased sperm progressive motility of 0.0090 (95% confidence interval [ CI]: -0.0147, -0.0033) and decreased total motility of 0.0094 (95% CI: -0.0160, -0.0029). HND was significantly associated with reduced sperm progressive motility and total motility of 0.0021 (95% CI: -0.0040, -0.0003) and 0.0023 (95% CI: -0.0043, -0.0002), respectively. Consistent results were observed at different temperature thresholds on hot nights.
CONCLUSION
Our findings highlight the need to mitigate nocturnal heat exposure during spermatogenesis to maintain optimal semen quality.
Humans
;
Male
;
Semen Analysis
;
Adult
;
Sperm Motility
;
Hot Temperature/adverse effects*
;
China
;
Middle Aged
;
Spermatozoa/physiology*
;
Young Adult
8.Generalized Functional Linear Models: Efficient Modeling for High-dimensional Correlated Mixture Exposures.
Bing Song ZHANG ; Hai Bin YU ; Xin PENG ; Hai Yi YAN ; Si Ran LI ; Shutong LUO ; Hui Zi WEIREN ; Zhu Jiang ZHOU ; Ya Lin KUANG ; Yi Huan ZHENG ; Chu Lan OU ; Lin Hua LIU ; Yuehua HU ; Jin Dong NI
Biomedical and Environmental Sciences 2025;38(8):961-976
OBJECTIVE:
Humans are exposed to complex mixtures of environmental chemicals and other factors that can affect their health. Analysis of these mixture exposures presents several key challenges for environmental epidemiology and risk assessment, including high dimensionality, correlated exposure, and subtle individual effects.
METHODS:
We proposed a novel statistical approach, the generalized functional linear model (GFLM), to analyze the health effects of exposure mixtures. GFLM treats the effect of mixture exposures as a smooth function by reordering exposures based on specific mechanisms and capturing internal correlations to provide a meaningful estimation and interpretation. The robustness and efficiency was evaluated under various scenarios through extensive simulation studies.
RESULTS:
We applied the GFLM to two datasets from the National Health and Nutrition Examination Survey (NHANES). In the first application, we examined the effects of 37 nutrients on BMI (2011-2016 cycles). The GFLM identified a significant mixture effect, with fiber and fat emerging as the nutrients with the greatest negative and positive effects on BMI, respectively. For the second application, we investigated the association between four pre- and perfluoroalkyl substances (PFAS) and gout risk (2007-2018 cycles). Unlike traditional methods, the GFLM indicated no significant association, demonstrating its robustness to multicollinearity.
CONCLUSION
GFLM framework is a powerful tool for mixture exposure analysis, offering improved handling of correlated exposures and interpretable results. It demonstrates robust performance across various scenarios and real-world applications, advancing our understanding of complex environmental exposures and their health impacts on environmental epidemiology and toxicology.
Humans
;
Environmental Exposure/analysis*
;
Linear Models
;
Nutrition Surveys
;
Environmental Pollutants
;
Body Mass Index
9.Regulatory Effect and Mechanism of Yichang Sanjie Granules on Intestinal Flora and Immune Function in Mice with Colon Cancer
Ai-Hua HOU ; Ling-Ling DAI ; Peng MENG ; Xiao-Ni ZHANG ; Song TAN ; Ze LIU ; Xiao-Hu ZHAO
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):719-728
Objective To observe the regulating effect and mechanism of Yichang Sanjie Granules on intestinal flora and immune function in mice with colon cancer.Methods Sixty mice were randomly divided into six groups,i.e.,the normal group,the model group,the low-,medium-and high-dose groups of Yichang Sanjie Granules,and the overexpression of melanoma absent gene 2(AIM2)plasmid(pcDNA-AIM2)intervention group,with 10 mice in each group.Colorectal cancer model was prepared by oxidized azomethine(AOM)/dextran sulfate sodium(DSS)induction method in all groups except normal group.After drug administration,the survival curves of mice in each group were plotted and the tumor volume was calculated;serum levels of immunoglobulin(Ig)G,IgM,interleukin(IL)-1β and IL-18 were detected by enzyme-linked immunosorbent assay(ELISA);peripheral blood levels of CD3+,CD4+,CD8+ T cells were detected by flow cytometry;the splenic index was determined;Hematoxylin-eosin(HE)staining was used to observe the pathological changes in colon tissues;16S-rDNA intestinal flora sequencing was used to detect the α-diversity of intestinal flora and the structure of intestinal flora communities;and protein immunoblotting(Wetsern Blot)was used to detect the protein expressions of AIM2,apoptosis-associated speckled-like protein containing a CARD(ASC),and cystatinase-1(caspase-1)in colon tissues.Results Compared with the normal group,the survival rate,serum levels of IgG and IgM,peripheral blood levels of CD3+ and CD4+ and CD4+/CD8+ ratio,protein expression levels of colon tissue AIM2,ASC and caspase-1 in the model group were significantly decreased,and the tumor volume,serum levels of IL-1β and IL-18,peripheral blood level of CD8+,and splenic index were significantly increased(all P<0.05),and the HE staining results showed the characteristic manifestations of colon cancer;compared with the model group,the survival rate,serum levels of IgG and IgM,peripheral blood levels of CD3+ and CD4+ and CD4+/CD8+ ratio,protein expression levels of colon tissue AIM2,ASC and caspase-1 in the low-,medium-and high-dose groups of Yichang Sanjie Granules and the pcDNA-AIM2 group were significantly increased,and the tumor volume,serum levels of IL-1β and IL-18,level of peripheral blood CD8+,and splenic index were significantly decreased(all P<0.05),and the HE staining results showed the manifestations of colon cancer were improved.Compared with the normal group,the Observed index,Chao1 index,Shannon index,the relative abundance of Bacteroidetes,Proteobacteria,Muribaculaceae,Lachnospiraceae-NK4A136group,and Ruminiclostridium in the model group were significantly decreased,while the relative abundance of Firmicutes,Actinobacteria,Patescibateria,Lactobacillus,Odoribacter,Alistipes,Ruminococcaceae-uncultured and Bacteroides was increased in the model group(P<0.05);compared with the model group,the Observed index,Chao1 index,Shannon index,the relative abundance of Bacteroidetes,Proteobacteria,Muribaculaceae,Lachnospiraceae-NK4A136group and Ruminiclostridium were significantly increased,and the relative abundance of Firmicutes,Actinobacteria,Patescibateria,Lactobacillus,Odoribacter,Alistipes,Ruminococcaceae-uncultured and Bacteroides was decreased in the low-,medium-and high-dose groups of Yichang Sanjie Granules and the pcDNA-AIM2 group(all P<0.05).Conclusion Yichang Sanjie Granules can increase autoimmunity and improve intestinal flora structure in mice with colon cancer,and its mechanism is related to the activation of AIM2 inflammatory vesicles.
10.snoRNAs and Its Potential Role in Hepatocellular Carcinoma
Xinxin SONG ; Xu WANG ; Juan NI
Cancer Research on Prevention and Treatment 2024;51(4):284-289
Small nucleolar RNAs (snoRNAs) are non-coding RNAs in the nucleolus and are mainly responsible for the 2'-O-methylation and pseudouridine modification of rRNA. snoRNAs regulate various biological processes, such as tRNA modification, spliceosome snRNA modification, maintenance of the telomere structure, and alternative splicing of mRNA. Aberrant expression of snoRNA is related to cancer progression, and it may become a new target for cancer treatment. snoRNAs are stable and easy to detect in body fluids, so they can be used as a biomarker for clinical diagnosis and prognostic. This article reviews the biogenesis, classification, structure, and function of snoRNAs and introduces their potential role in the occurrence and development of hepatocellular carcinoma.


Result Analysis
Print
Save
E-mail