Introduction: Rac1 and STIM1 genes are emerging therapeutic targets for cancers. However, their roles in acute myeloid leukaemia (AML) are not well understood. The goal of this study was to evaluate the effects of dose and time on Rac1 and STIM1 knockdown in the AML cell line model (THP-1 cells). Methods: THP-1 cells were transfected with siRac1 at doses of 50, 100, and 200 nM or dsiSTIM1 at doses of 2, 5, and 10 nM. Expression level of Rac1 and STIM1 then were assessed at time points between 12 and 72 h post-transfection using real-time reverse transcription polymerase chain reaction. Results: Compared to the control, 87% Rac1 knockdown was attained with 50 nM siRac1 at 24 h post-transfection, and 70% STIM1 knockdown was achieved with 10 nM dsiSTIM1 at 48 h post-transfection. Conclusion: These results show that effective knockdown of Rac1 and STIM1 is possible, and therapy that includes Rac1 and STIM1 inhibitors eventually could provide a new and highly effective strategy for AML treatment.