1.THE EXPRESSION OF FOS IN THE WHOLE BRAIN OF RATS FOLLOWING COMPLEX DOUBLE ROTATION ON TWO AXES
Shunnan GE ; Yulin DONG ; Fuxing ZHANG ; Jinlian LI
Chinese Journal of Neuroanatomy 2007;23(4):341-348
To investigate the relationship of the rotation stimulation with motion sickness, the expression of Fos protein in the whole brain of the rat stimulated by complex double rotation on two axes was observed in the present study. The rats were randomly divided into four groups: normal contral group; double-axes rotation stimulation group; the bilateral labyrinthectomy group; group of two-axes rotation stimulation after the bilateral labyrinthectomy. Immunohistochemical staining method was used to detect the expression of Fos protein in different regions of whole brain of the rat. The present results showed that: (1) No Fos-like immunoreactivity was detected in the brain of the rats in control group and the bilateral labyrinthectomy group; (2) In the double-axes rotation stimulation group, the Fos-like immunoreactive neurons were observed in many regions of the brain and brainstem of the rats following complex double-axes rotation stimulation, and the Fos-immunoreactivities were expressed in the nucleus. These Fos-immunopositive neurons were intensively distributed in different subnuclei of the vestibular nucleus complex (including medial, superior and spinal nuclei), nucleus of the solitary tract, locus coeruleus, medial and lateral parabrachial nucleus of the brainstem, paraventricular nucleus of the diencephalons and the amygdala of the limbic system; (3) The expression of Fos protein can be scarcely detected around forementioned regions in brains of the rats following complex two-axes rotation stimulation after the bilateral labyrinthectomy. The present results suggest that the double-axes rotation stimulation can activate effectively the vestibular neurons and many neurons of other region of the brain and brainstem are further activated through direct or indirect connections with vestibular nuclei after complex double rotation stimulation. These activated neurons may be related to the complex mechanism of the motion sickness.
2.Establishment of A Model in Rat Brain Nuclei Microelectrode Recording Coupled Behavioristics for Rehabilitation Experiment
Shenghao ZHANG ; Nan LI ; Shunnan GE ; Yang LI ; Songyan WU ; Xuelian WANG ; Chaohui LIU
Chinese Journal of Rehabilitation Theory and Practice 2016;22(4):399-403
Objective To establish a coupled model combining the rat brain nuclei microelectrode recordings and the behavioristics for rehabilitation experiment. Methods The modified indwelling tube connection fixed device was put inside the rats' back, and the microprobes were implanted into related neural nucleus. A signal connection was made between self-administration system and electrophysiological data acquisition system. The rat was addicted after training by self-administration system. The related cerebral nucleus electrophysiological sig-nals were recorded in different states of addiction. Results and Conclusion The modified indwelling tube connection fixed device has a bet-ter quality for reducing the phenomenon of leak. The signal was well in the combination of two different systems. The signals for the rat's ac-tion and neural electrical were recorded in the same time.
3. Acrolein Induces Systemic Coagulopathy via Autophagy-dependent Secretion of von Willebrand Factor in Mice after Traumatic Brain Injury
Wenxing CUI ; Xun WU ; Dayun FENG ; Jianing LUO ; Yingwu SHI ; Wei GUO ; Haixiao LIU ; Qiang WANG ; Liang WANG ; Shunnan GE ; Yan QU
Neuroscience Bulletin 2021;37(8):1160-1175
Traumatic brain injury (TBI)-induced coagulopathy has increasingly been recognized as a significant risk factor for poor outcomes, but the pathogenesis remains poorly understood. In this study, we aimed to investigate the causal role of acrolein, a typical lipid peroxidation product, in TBI-induced coagulopathy, and further explore the underlying molecular mechanisms. We found that the level of plasma acrolein in TBI patients suffering from coagulopathy was higher than that in those without coagulopathy. Using a controlled cortical impact mouse model, we demonstrated that the acrolein scavenger phenelzine prevented TBI-induced coagulopathy and recombinant ADAMTS-13 prevented acrolein-induced coagulopathy by cleaving von Willebrand factor (VWF). Our results showed that acrolein may contribute to an early hypercoagulable state after TBI by regulating VWF secretion. mRNA sequencing (mRNA-seq) and transcriptome analysis indicated that acrolein over-activated autophagy, and subsequent experiments revealed that acrolein activated autophagy partly by regulating the Akt/mTOR pathway. In addition, we demonstrated that acrolein was produced in the perilesional cortex, affected endothelial cell integrity, and disrupted the blood-brain barrier. In conclusion, in this study we uncovered a novel pro-coagulant effect of acrolein that may contribute to TBI-induced coagulopathy and vascular leakage, providing an alternative therapeutic target.