1.Anomalous systemic arterial supply to normal basal segments of the left lower lobe of the lung:characteristic findings on chest radiography and spiral CT
Guang-Zhao YANG ; Shun-Biao ZHAO ; Ming CHAO ;
Chinese Journal of Radiology 2001;0(08):-
Objective To summarize the characteristic findings on chest radiography and spiral CT of anomalous systemic arterial supply to normal basal segments of the left lower lobe of the lung.Methods Five patients with anomalous systemic arterial supply to normal basal segments of the left lower lobe of the lung were retrospectively reviewed.Chest radiography,and contrast-enhanced spiral CT scan were analyzed. Results On posteroanterior chest radiographs,the findings in 5 cases of this anomaly were all shown as a retrocardiac mass,narrowing lower lobar pulmonary artery shadow,and without normal lower lobar pulmonary artery branches but there were dilated abnormal markings in left lower lung zone.On contrast- enhanced spiral CT scans,the involved left lower lobe of the lung had mild volume loss but normal bronchial trees in all 5 cases and areas of ground-glass opacity in 2 cases.The absence of normal left lower lobar pulmonary artery distal to the origin of superior segmental artery,anomalous systemic artery originating from the descending aorta,diffuse dilatation of the systemic arterial branches distributed in the basal segments of the left lower lobe were also found in all the patients.One patient who underwent angiography had similar vessel features with spiral CT.Conclusion There are some characteristic findings on chest radiography in this anomaly.the contrast-enhanced spiral CT scans are important in diagnosing and avoiding invasive angiography and life-threatening lung biopsy.
2.Molecular characterization of a mitogen-activated protein kinase gene DoMPK1 in Dendrobium officinale.
Gang ZHANG ; Ming-Ming ZHAO ; Chao SONG ; Da-Wei ZHANG ; Biao LI ; Shun-Xing GUO
Acta Pharmaceutica Sinica 2012;47(12):1703-1709
The mitogen-activated protein kinase (MAPK) cascade, composed of MAPK kinase kinase (MAP3K), MAPK kinase (MAP2K), and MAPK, is abundantly conserved in all eukaryotes. MAPK along with MAPK cascade plays a vital regulatory role in the plant-arbuscular mycorrhiza/rhizobium nodule symbioses. However, the biological function of MAPK in orchid mycorrhiza (OM) symbiosis remains elusive. In the present study, a MAPK gene, designated as DoMPK1 (GenBank accession No. JX297594), was identified from D. officinale roots infected by an OM fungus-Mycena sp. using the reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) methods. The full length cDNA of DoMPK1 was 1 263 bp and encoded a 372 aa protein with a molecular weight of 42.61 kD and an isoelectric point (pI) of 6.07. The deduced DoMPK1 protein contained the conserved serine/threonine-protein kinase catalytic domain (39-325) and MAP kinase signature (77-177). Multiple sequence alignment and phylogenetic analysis demonstrated that DoMPK1 was highly homologous (71%-85%) to MAPK genes from various plant species and was closely related to those from monocots. Real time quantitative PCR (qPCR) analysis revealed that DoMPK1 was constitutively expressed in leaves, stems, roots and seeds, and the transcript abundance was not significantly different in the four included tissues. Furthermore, DoMPK1 transcript was markedly induced in roots at 30 d after fungal infection, with 7.91 fold compared to that of the mock inoculated roots, suggesting implication of DoMPK1 in the early D. officinale and Mycena sp. interaction and an essential role in the symbiosis. Our study characterized a MAPK gene associated with OM symbiosis for the first time, and will be helpful for further functional elucidation of DoMPK1 involving in D. officinale and Mycena sp. symbiotic interaction.
Agaricales
;
growth & development
;
Amino Acid Sequence
;
Base Sequence
;
Cloning, Molecular
;
DNA, Complementary
;
genetics
;
Dendrobium
;
enzymology
;
genetics
;
microbiology
;
Gene Expression Regulation, Plant
;
Mitogen-Activated Protein Kinases
;
genetics
;
metabolism
;
Molecular Weight
;
Phylogeny
;
Plants, Medicinal
;
enzymology
;
genetics
;
microbiology
;
Sequence Alignment
;
Symbiosis
3.Cloning and expression analysis of a calcium-dependent protein kinase gene in Dendrobium officinale in response to mycorrhizal fungal infection.
Gang ZHANG ; Ming-Ming ZHAO ; Biao LI ; Chao SONG ; Da-Wei ZHANG ; Shun-Xing GUO
Acta Pharmaceutica Sinica 2012;47(11):1548-1554
Calcium-dependent protein kinases (CDPKs) play an important regulatory role in the plantarbuscular mycorrhiza/rhizobium nodule symbiosis. However, the biological action of CDPKs in orchid mycorrhiza (OM) symbiosis remains unclear. In the present study, a CDPK encoding gene, designated as DoCPK1 (GenBank accession No. JX193703), was identified from D. officinale roots infected by an OM fungus-Mycena sp. using the reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) methods, for the first time. The full length cDNA of DoCPK1 was 2137 bp in length and encoded a 534 aa protein with a molecular weight of 59.61 kD and an isoelectric point (pI) of 6.03. The deduced DoCPK1 protein contained the conserved serine/threonine-protein kinase catalytic domain and four Ca2+ binding EF hand motifs. Multiple sequence alignment demonstrated that DoCPK1 was highly homologous (85%) to the Panax ginseng PgCPK1 (ACY78680), followed by CDPKs genes from wheat, rice, and Arabidopsis (ABD98803, ADM14342, Q9ZSA2, respectively). Phylogenetic analysis showed that DoCPK1 was closely related to CDPKs genes from monocots, such as wheat, maize and rice. Real time quantitative PCR (qPCR) analysis revealed that DoCPK1 was constitutively expressed in the included tissues and the transcript levels were in the order of roots > stems > seeds > leaves. Furthermore, DoCPK1 transcripts were significantly accumulated in roots 30 d after fungal infection, with 5.16 fold compared to that of the mock roots, indicating involvement of DoCPK1 during the early interaction between D. officinale and Mycena sp., and a possible role in the symbiosis process. This study firstly provided important clues of a CDPK gene associated with OM symbiosis, and will be useful for further functional determination of the gene involving in D. officinale and Mycena sp. symbiosis.
Agaricales
;
growth & development
;
physiology
;
Amino Acid Sequence
;
Base Sequence
;
Cloning, Molecular
;
DNA, Complementary
;
genetics
;
Dendrobium
;
enzymology
;
genetics
;
microbiology
;
Gene Expression Regulation, Plant
;
Molecular Weight
;
Mycorrhizae
;
growth & development
;
physiology
;
Phylogeny
;
Plant Leaves
;
enzymology
;
genetics
;
microbiology
;
Plant Roots
;
enzymology
;
genetics
;
microbiology
;
Plant Stems
;
enzymology
;
genetics
;
microbiology
;
Plants, Medicinal
;
enzymology
;
genetics
;
microbiology
;
Protein Kinases
;
genetics
;
metabolism
;
Seeds
;
enzymology
;
genetics
;
microbiology
;
Sequence Alignment
;
Symbiosis
4.Effects of Compound Danshen Dripping Pills on Ventricular Remodeling and Cardiac Function after Acute Anterior Wall ST-Segment Elevation Myocardial Infarction (CODE-AAMI): Protocol for a Randomized Placebo-Controlled Trial.
Yu-Jie WU ; Bo DENG ; Si-Bo WANG ; Rui QIAO ; Xi-Wen ZHANG ; Yuan LU ; Li WANG ; Shun-Zhong GU ; Yu-Qing ZHANG ; Kai-Qiao LI ; Zong-Liang YU ; Li-Xing WU ; Sheng-Biao ZHAO ; Shuang-Lin ZHOU ; Yang YANG ; Lian-Sheng WANG
Chinese journal of integrative medicine 2023;29(12):1059-1065
BACKGROUND:
Ventricular remodeling after acute anterior wall ST-segment elevation myocardial infarction (AAMI) is an important factor in occurrence of heart failure which additionally results in poor prognosis. Therefore, the treatment of ventricular remodeling needs to be further optimized. Compound Danshen Dripping Pills (CDDP), a traditional Chinese medicine, exerts a protective effect on microcirculatory disturbance caused by ischemia-reperfusion injury and attenuates ventricular remodeling after myocardial infarction.
OBJECTIVE:
This study is designed to evaluate the efficacy and safety of CDDP in improving ventricular remodeling and cardiac function after AAMI on a larger scale.
METHODS:
This study is a multi-center, randomized, double-blind, placebo-controlled, parallel-group clinical trial. The total of 268 patients with AAMI after primary percutaneous coronary intervention (pPCI) will be randomly assigned 1:1 to the CDDP group (n=134) and control group (n=134) with a follow-up of 48 weeks. Both groups will be treated with standard therapy of ST-segment elevation myocardial infarction (STEMI), with the CDDP group administrating 20 tablets of CDDP before pPCI and 10 tablets 3 times daily after pPCI, and the control group treated with a placebo simultaneously. The primary endpoint is 48-week echocardiographic outcomes including left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume index (LVEDVI), and left ventricular end-systolic volume index (LVESVI). The secondary endpoint includes the change in N terminal pro-B-type natriuretic peptide (NT-proBNP) level, arrhythmias, and cardiovascular events (death, cardiac arrest, or cardiopulmonary resuscitation, rehospitalization due to heart failure or angina pectoris, deterioration of cardiac function, and stroke). Investigators and patients are both blinded to the allocated treatment.
DISCUSSION
This prospective study will investigate the efficacy and safety of CDDP in improving ventricular remodeling and cardiac function in patients undergoing pPCI for a first AAMI. Patients in the CDDP group will be compared with those in the control group. If certified to be effective, CDDP treatment in AAMI will probably be advised on a larger scale. (Trial registration No. NCT05000411).
Humans
;
ST Elevation Myocardial Infarction/therapy*
;
Stroke Volume
;
Ventricular Remodeling
;
Prospective Studies
;
Microcirculation
;
Ventricular Function, Left
;
Myocardial Infarction/etiology*
;
Treatment Outcome
;
Percutaneous Coronary Intervention/adverse effects*
;
Heart Failure/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Randomized Controlled Trials as Topic
;
Multicenter Studies as Topic