1.Study on the influential factors of blood concentration for duloxetine based on therapeutic drug monitoring
Yang LUN ; Liguang DUAN ; Feiyue AN ; Ran FU ; Jing YU ; Chaoli CHEN ; Mengqiang ZHAO ; Shi SU ; Yang SONG ; Jiaqi WANG ; Yuhang YAN ; Chunhua ZHOU
China Pharmacy 2025;36(6):727-731
OBJECTIVE To explore the main factors influencing the blood concentration of duloxetine, and provide a scientific basis for the individualized use of duloxetine. METHODS Retrospective analysis was conducted on 434 inpatients with depressive disorders at the First Hospital of Hebei Medical University, who were treated with duloxetine and underwent blood concentration monitoring between January 2022 and April 2024. The study examined the impact of various factors, including gender, age, body mass index (BMI), gene phenotypes, combined medication, drug type (original/generic), and genotyping results of gene single nucleotide polymorphism loci, on blood concentration and the concentration-to-dose (C/D) after dose adjustment. RESULTS The blood concentration of duloxetine was 76.65 (45.57, 130.31) ng/mL, and C/D was 0.96 (0.63, 1.60) ng·d/(mL·mg). The blood concentration of duloxetine was positively correlated with the daily dose of administration (R2=0.253 7, P<0.001). Blood concentration of duloxetine in 38.94% of patients exceeded the recommended range specified in the guidelines. Gender, age, BMI, combined use of CYP2D6 enzyme inhibitors, and CYP2D6 and CYP1A2 phenotypes had significant effects on C/D of duloxetine (P<0.05). CONCLUSIONS The patient’s age, gender, BMI, combined medication, and genetic phenotypes are closely related to the blood concentration of duloxetine.
2.Intergenerational Effects on Metabolic Health: Perspectives on Maternal Nutrition and Exercise During Pregnancy
Jie LI ; Hai-Wang SHI ; Rui DUAN
Progress in Biochemistry and Biophysics 2025;52(6):1605-1616
With the increasing prevalence of overweight and obesity among children and adolescents in China, pediatric metabolic syndrome has emerged as a significant public health challenge. The Developmental Origins of Health and Disease (DOHaD) theory underscores the critical influence of early environmental factors on lifelong metabolic health. Consequently, maternal nutritional status and physical activity during pregnancy have become key modifiable factors that have attracted considerable attention in recent years. Research indicates exposure to a maternal high-fat diet (HFD) during pregnancy has long-term effects on offspring health, which may be transmitted through placental transit disorder, inflammation, and oxidative stress. Similarly, a high-protein diet (HPD) during pregnancy exhibits a dose- and time-dependent biphasic effect: excessive intake may lead to fetal growth restriction and an increased risk of preterm birth, whereas moderate supplementation may instead reduce the susceptibility of offspring to obesity. Interestingly, caloric restriction (CR) during pregnancy presents a double-edged sword: while it may impair the development of metabolic organs in offspring, moderate CR in metabolically compromised mothers can ameliorate maternal metabolic dysfunction and reprogram oocyte DNA methylation, significantly lowering the risk of metabolic disorders in offspring. Notably, metabolic abnormalities induced by a low-protein diet (LPD) during pregnancy demonstrate lifecycle-accumulative effects and transgenerational inheritance, with offspring exhibiting obesity phenotypes during weaning, insulin resistance in adulthood, and hepatic decompensation in old age, mediated through oocyte epigenetic reprogramming. Additionally, maintaining an optimal micronutrient balance is crucial for the metabolic homeostasis of offspring, as both deficiency and excess can lead to detrimental outcomes. Maternal exercise has been established as a safe and effective non-pharmacological intervention that confers multigenerational metabolic benefits through diverse biological pathways. Maternal metabolic dysregulation represents a critical determinant of offspring metabolic disorders. Regular exercise during gestation exerts protective effects by attenuating maternal systemic inflammation and reducing the incidence of pregnancy-related complications, thereby effectively mitigating fetal overgrowth and metabolic dysfunction. This dual benefit for both mother and offspring underscores the pivotal role of gestational physical activity in promoting long-term metabolic health. The placenta, serving as the exclusive interface for maternal-fetal communication, mediates exercise-induced metabolic programming through enhanced secretion of key regulatory factors (including SOD3, Apelin, ADPN, and Irisin) and promotes the development of vascular networks, collectively optimizing nutrient transport efficiency. The intrauterine period represents a crucial window for epigenetic reprogramming, during which maternal exercise modulates DNA methylation patterns of critical metabolic genes (e.g., Ppargc-1α, Prdm16, Klf4, and Slc23a2) in offspring, thereby enhancing their capacity to resist metabolic disorders. Notably, the regulatory effects of maternal exercise extend beyond the gestational period. Postnatally, exercise-induced modifications in the bioactive components of breast milk and gut microbiota composition contribute to the sustained maintenance of metabolic homeostasis in offspring, establishing a continuum of metabolic protection from prenatal to postnatal stages. This review explores the potential of maternal combined nutrition-exercise interventions, suggesting that such strategies may synergistically enhance transgenerational health benefits through interactions within the metabolic-epigenetic network, thereby outperforming single interventions. Additionally, it examines current research limitations, including controversies surrounding transgenerational mechanisms, sex-specific responses, and undefined dynamic thresholds, while providing directions for future investigations. These findings pave the way for a theoretical foundation for early-life health interventions, potentially offering a more effective strategy for combatting intergenerational metabolic disorders.
3.Pathogenesis of Vertigo and Therapeutic Effect of Xiao Chaihutang Based on Theory of Mutual Interference between Clear Qi and Turbid Qi in Huangdi's Internal Classic
Lanyun SHI ; Zhiyong LIU ; Zhen WANG ; Meina ZHAO ; Mengyuan ZHANG ; Chengsi DUAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):248-256
As a common medical condition, vertigo can be induced by multiple diseases in the modern medical system. Its incidence rate shows an upward trend with the increase in age. According to the theory of mutual interference between clear Qi and turbid Qi in Huangdi's Internal Classic (Huang Di Nei Jing), this paper systematically analyzes the pathogenesis of vertigo and explores the mechanism and clinical application value of Xiao Chaihutang in the treatment of vertigo. It is believed that the mutual inference between clear Qi and turbid Qi leads to the failure of clear Yang to ascend, resulting in the lack of nourishment for the brain and the inability of turbid Yin to descend, which disturbs the clear orifices, thus causing vertigo. The core pathogenesis lies in the dysfunction of Qi movement, the disorder of body fluid distribution, and the imbalance between Yin and Yang. The compatibility of Xiao Chaihutang takes into account the methods of pungent medicinal materials opening and bitter medicinal materials descending, tonifying deficiency and purging excess, and regulating Qi movement. This prescription can regulate the pathological state of the mutual interference between clear Qi and turbid Qi from three aspects: regulating Qi movement throughout the body, harmonizing the distribution of body fluids, and coordinating Yin and Yang as well as the interior and exterior, thus preventing and treating vertigo. Modern research findings show that Xiao Chaihutang can improve hemodynamics to promote cerebral blood circulation and has anti-inflammation, immunomodulatory, and anti-tumor functions, which correspond to the therapeutic effects of Xiao Chaihutang under the theory of mutual interference between clear Qi and turbid Qi. The decoction exerts therapeutic effects on vertigo caused by hypertension, stroke, otitis media, Meniere’s disease, and brain tumor as well as benign paroxysmal positional vertigo. Further exploration of the theoretical connotation of mutual inference between clear Qi and turbid Qi and analysis of the pathogenesis of vertigo and the therapeutic effect of Xiao Chaihutang can better interpret the internal correlations among the three, thus providing new ideas for the syndrome differentiation and treatment of vertigo.
4.Systemic lupus erythematosus related thrombotic microangiopathy: A retrospective study based on Chinese SLE Treatment and Research Group (CSTAR) registry.
Yupei ZHANG ; Nan JIANG ; Zhen CHEN ; Xinwang DUAN ; Xiaofei SHI ; Hongbin LI ; Zhenyu JIANG ; Yuhua WANG ; Yanhong WANG ; Jiuliang ZHAO ; Qian WANG ; Xinping TIAN ; Mengtao LI ; Xiaofeng ZENG
Chinese Medical Journal 2025;138(5):613-615
5.Cation Channel TMEM63A Autonomously Facilitates Oligodendrocyte Differentiation at an Early Stage.
Yue-Ying WANG ; Dan WU ; Yongkun ZHAN ; Fei LI ; Yan-Yu ZANG ; Xiao-Yu TENG ; Linlin ZHANG ; Gui-Fang DUAN ; He WANG ; Rong XU ; Guiquan CHEN ; Yun XU ; Jian-Jun YANG ; Yongguo YU ; Yun Stone SHI
Neuroscience Bulletin 2025;41(4):615-632
Accurate timing of myelination is crucial for the proper functioning of the central nervous system. Here, we identified a de novo heterozygous mutation in TMEM63A (c.1894G>A; p. Ala632Thr) in a 7-year-old boy exhibiting hypomyelination. A Ca2+ influx assay suggested that this is a loss-of-function mutation. To explore how TMEM63A deficiency causes hypomyelination, we generated Tmem63a knockout mice. Genetic deletion of TMEM63A resulted in hypomyelination at postnatal day 14 (P14) arising from impaired differentiation of oligodendrocyte precursor cells (OPCs). Notably, the myelin dysplasia was transient, returning to normal levels by P28. Primary cultures of Tmem63a-/- OPCs presented delayed differentiation. Lentivirus-based expression of TMEM63A but not TMEM63A_A632T rescued the differentiation of Tmem63a-/- OPCs in vitro and myelination in Tmem63a-/- mice. These data thus support the conclusion that the mutation in TMEM63A is the pathogenesis of the hypomyelination in the patient. Our study further demonstrated that TMEM63A-mediated Ca2+ influx plays critical roles in the early development of myelin and oligodendrocyte differentiation.
Animals
;
Cell Differentiation/physiology*
;
Oligodendroglia/metabolism*
;
Mice, Knockout
;
Mice
;
Male
;
Myelin Sheath/metabolism*
;
Humans
;
Child
;
Cells, Cultured
;
Oligodendrocyte Precursor Cells/metabolism*
6.Coral calcium hydride promotes peripheral mitochondrial division and reduces AT-II cells damage in ARDS via activation of the Trx2/Myo19/Drp1 pathway.
Qian LI ; Yang ANG ; Qing-Qing ZHOU ; Min SHI ; Wei CHEN ; Yujie WANG ; Pan YU ; Bing WAN ; Wanyou YU ; Liping JIANG ; Yadan SHI ; Zhao LIN ; Shaozheng SONG ; Manlin DUAN ; Yun LONG ; Qi WANG ; Wentao LIU ; Hongguang BAO
Journal of Pharmaceutical Analysis 2025;15(3):101039-101039
Acute respiratory distress syndrome (ARDS) is a common respiratory emergency, but current clinical treatment remains at the level of symptomatic support and there is a lack of effective targeted treatment measures. Our previous study confirmed that inhalation of hydrogen gas can reduce the acute lung injury of ARDS, but the application of hydrogen has flammable and explosive safety concerns. Drinking hydrogen-rich liquid or inhaling hydrogen gas has been shown to play an important role in scavenging reactive oxygen species and maintaining mitochondrial quality control balance, thus improving ARDS in patients and animal models. Coral calcium hydrogenation (CCH) is a new solid molecular hydrogen carrier prepared from coral calcium (CC). Whether and how CCH affects acute lung injury in ARDS remains unstudied. In this study, we observed the therapeutic effect of CCH on lipopolysaccharide (LPS) induced acute lung injury in ARDS mice. The survival rate of mice treated with CCH and hydrogen inhalation was found to be comparable, demonstrating a significant improvement compared to the untreated ARDS model group. CCH treatment significantly reduced pulmonary hemorrhage and edema, and improved pulmonary function and local microcirculation in ARDS mice. CCH promoted mitochondrial peripheral division in the early course of ARDS by activating mitochondrial thioredoxin 2 (Trx2), improved lung mitochondrial dysfunction induced by LPS, and reduced oxidative stress damage. The results indicate that CCH is a highly efficient hydrogen-rich agent that can attenuate acute lung injury of ARDS by improving the mitochondrial function through Trx2 activation.
7.Expert consensus on classification and diagnosis of congenital orofacial cleft.
Chenghao LI ; Yang AN ; Xiaohong DUAN ; Yingkun GUO ; Shanling LIU ; Hong LUO ; Duan MA ; Yunyun REN ; Xudong WANG ; Xiaoshan WU ; Hongning XIE ; Hongping ZHU ; Jun ZHU ; Bing SHI
West China Journal of Stomatology 2025;43(1):1-14
Congenital orofacial cleft, the most common birth defect in the maxillofacial region, exhibits a wide range of prognosis depending on the severity of deformity and underlying etiology. Non-syndromic congenital orofacial clefts typically present with milder deformities and more favorable treatment outcomes, whereas syndromic congenital orofacial clefts often manifest with concomitant organ abnormalities, which pose greater challenges for treatment and result in poorer prognosis. This consensus provides an elaborate classification system for varying degrees of orofacial clefts along with corresponding diagnostic and therapeutic guidelines. Results serve as a crucial resource for families to navigate prenatal screening results or make informed decisions regarding treatment options while also contributing significantly to preventing serious birth defects within the development of population.
Humans
;
Cleft Lip/diagnosis*
;
Cleft Palate/diagnosis*
;
Consensus
;
Prenatal Diagnosis
;
Female
8.Immunostimulatory gene therapy combined with checkpoint blockade reshapes tumor microenvironment and enhances ovarian cancer immunotherapy.
Yunzhu LIN ; Xiang WANG ; Shi HE ; Zhongxin DUAN ; Yunchu ZHANG ; Xiaodong SUN ; Yuzhu HU ; Yuanyuan ZHANG ; Zhiyong QIAN ; Xiang GAO ; Zhirong ZHANG
Acta Pharmaceutica Sinica B 2024;14(2):854-868
Immune evasion has made ovarian cancer notorious for its refractory features, making the development of immunotherapy highly appealing to ovarian cancer treatment. The immune-stimulating cytokine IL-12 exhibits excellent antitumor activities. However, IL-12 can induce IFN-γ release and subsequently upregulate PDL-1 expression on tumor cells. Therefore, the tumor-targeting folate-modified delivery system F-DPC is constructed for concurrent delivery of IL-12 encoding gene and small molecular PDL-1 inhibitor (iPDL-1) to reduce immune escape and boost anti-tumor immunity. The physicochemical characteristics, gene transfection efficiency of the F-DPC nanoparticles in ovarian cancer cells are analyzed. The immune-modulation effects of combination therapy on different immune cells are also studied. Results show that compared with non-folate-modified vector, folate-modified F-DPC can improve the targeting of ovarian cancer and enhance the transfection efficiency of pIL-12. The underlying anti-tumor mechanisms include the regulation of T cells proliferation and activation, NK activation, macrophage polarization and DC maturation. The F-DPC/pIL-12/iPDL-1 complexes have shown outstanding antitumor effects and low toxicity in peritoneal model of ovarian cancer in mice. Taken together, our work provides new insights into ovarian cancer immunotherapy. Novel F-DPC/pIL-12/iPDL-1 complexes are revealed to exert prominent anti-tumor effect by modulating tumor immune microenvironment and preventing immune escape and might be a promising treatment option for ovarian cancer treatment.
9.The practicability of up-converting phosphor technology in the field of plague epidemic surveillance
Haipeng ZHANG ; Fengyi YANG ; Cunjuan DUAN ; Haiyan PENG ; Liyuan SHI ; Peng WANG ; Youhong ZHONG
Chinese Journal of Endemiology 2024;43(9):755-759
Objective:To evaluate the practical value of the up-converting phosphor technology (UPT) in the field fast detection of plague, and to provide scientific basis for its promotion and application in the field work of plague monitoring.Methods:In September 2020, a total of 116 samples (including 4 samples for epidemic determination) were collected at the plague epidemic site in Menghai County, Yunnan Province, including 24 human blood and lymphatic fluid samples, 83 rat liver and muscle samples, and 9 rat blood samples. In March 2023, a total of 12 rat liver and muscle samples were collected from Lijiang City for on-site monitoring of plague outbreak (all of them were outbreak determination samples). All of the above samples were tested for Yersinia pestis antibody and antigen using the up-converting phosphor technology. At the same time, haemagglutination test, real-time fluorescence quantitative PCR and bacterial culture were conducted to compare the detection process and results of different experimental methods, the advantages and disadvantages of the up-converting phosphor technology for detecting Yersinia pestis were analyzed, and the feasibility of using this detection method in the field of plague epidemic monitoring was judged. Results:The plague epidemic samples site in Menghai County, Yunnan Province were tested by up-converting phosphor technology, and 19 samples were found to be positive for Yersinia pestis (1 antibody-positive and 18 antigen-positive). Among the samples determined, 4 samples with positive results of Yersinia pestis were detected by up-converting phosphor technology, and the results of their haemagglutination test, real-time fluorescence quantitative PCR and bacterial culture were all positive. All samples from Lijiang City were tested by up-converting luminescence technology, two samples were positive for Yersinia pestis(antigen-positive). The results of haemagglutination test and real-time fluorescence quantitative PCR were positive, and one sample was positive for bacterial culture. The time required for up-converting phosphor technology, haemagglutination test, real-time fluorescence quantitative PCR, and bacterial culture were 0.5, 4.0, 2.5 and 72.0 h, respectively. Conclusions:The results of Yersinia pestis detection by up-converting phosphor technology are basically consistent with the results of haemagglutination test, real-time fluorescence quantitative PCR and bacterial culture, but the time used is relatively short. When the number of samples is large, this method can be used preferentially in the field work of plague outbreak monitoring, which can quickly complete the preliminary judgement of plague outbreak, and save a lot of time and economic resources for the next step of plague prevention and control work.
10.Research Progress of Contrast-Enhanced Ultrasound in the Diagnosis of Lower Extremity Lymphedema
Wenyan FU ; Yaxi WANG ; Shasha DUAN ; Yilu SHI ; Zhiyuan JIN ; Xiaoshan ZHANG
Chinese Journal of Medical Imaging 2024;32(1):109-112
Lymphoedema of lower extremities,chronic and progressive,will severely deteriorate the quality of life of patients as it progresses.Thus,early diagnosis and treatment to delay the progress of the disease is conducive to improving the prognosis of patients.At present,common techniques for the diagnosis of lower limb lymphedema,whose advantages and disadvantages vary,cannot be applied to individual case comprehensively.CEUS has the advantages of non-invasion,convenience,real-time,and good repeatability for this disease.CEUS can enhance the image of lymph in lymphatics,and has a high sensitivity to superficial lymphatics,gradually applied in lymphedema of lower limbs.This article reviews the application of CEUS in lower limb lymphedema.

Result Analysis
Print
Save
E-mail