1.Research on a new type of precision cropping method with variable frequency vibration
Chunjian HUA ; Shengdun ZHAO ; Xuelai ZHANG
Journal of Pharmaceutical Analysis 2007;19(2):172-176
Aiming at the cropping operations widely applied in practical industry production, a new method of bar cropping is presented. The rotational speeds of actuating motor of eccentric blocks are controlled by a frequency-changer, and the shearing die provides the bar with the controllable force, frequency and amplitude of vibration. By utilizing the stress concentration at the bottom of V shape groove on the bar, the low stress bar cropping is realized. The bar cropping experiments of duralumin alloy and steel show that the shear surface has no radial distortion and deviation angle, the cutting force is lower and the die life is longer compared with the common bar cropping method. According to the special feature of cutting surface obtained by the new method, a new method of measurement is proposed and applied to assess the cutting surfaces obtained by the different control curves of frequency. The results show that the linear decrease control method is the best.
2.A method to calculate and counterbalance the inertia force of slider-crank mechanisms in high-speed presses
Jim WANG ; Shengdun ZHAO ; Hushan SHI ; Chunjian HUA
Journal of Pharmaceutical Analysis 2009;21(3):141-148
A new method to calculate and counterbalance the inertia force of slider-crank mechanisms in high-speed mechanical presses was put forward. By analyzing the kinematic characteristics of a center-located slider-crank mechanism whose crank rotates at a constant angular velocity, the kinematic parameters of the slide, connecting rod and crank were formulated approximately. On the basis of the results above, three inertia forces and the input moment in the mechanism during its idle running were investigated and formulated by dynamic analysis. A verification experiment was performed on a slider-crank mechanism at a high-speed press machine. The forces derived from the established formulas were compared respectively with those obtained by the ADAMS software and the classical method of connecting rod mass substitution. It was experimentally found that the proposed formulas have an improved performance over related earlier techniques. By use of these results, a 1000 kN 1250 rpm four-point high-speed press machine was designed and manufactured. The slide of this press is driven by four sets of slider-crank mechanisms with symmetrical layout and opposite rotation directions to counterbalance the horizontal inertia forces. Four eccentric counterbalance blocks were designed to counterbalance the vertical force after their mass and equivalent eccentric radius were formulated. The high-speed press machine designed by the proposed counterbalance method has worked with satisfactory performance and good dynamic balance for more than four years in practical production.