1.Isolated peripheral neuropathy as an unusual presentation for an extramedullary relapse of acute leukemia
Xiao-Ying Zhu ; Sheng-Han Kuo ; Li-Ping Wan ; Ye Liu ; Yun-Cheng Wu
Neurology Asia 2014;19(2):203-206
A 23-year-old man in remission from acute myeloblastic leukemia after allogeneic peripheral blood stem cell transplantation developed peripheral neuropathy presenting as sciatic and peroneal nerve deficits. Electrophysiological tests localized the lesions to the left sciatic and common peroneal nerve. Magnetic resonance imaging revealed nerve thickening and enhancement, while a positron emission tomography-computed tomography scan demonstrated increased fluorodeoxyglucose uptake tracking along the nerve, suggesting peripheral nerve infiltration. This report demonstrates an unusual presentation of acute leukemia relapse presenting as focal neuropathy
2.Assessing the performance of ChatGPT in answering questions regarding cirrhosis and hepatocellular carcinoma
Yee Hui YEO ; Jamil S. SAMAAN ; Wee Han NG ; Peng-Sheng TING ; Hirsh TRIVEDI ; Aarshi VIPANI ; Walid AYOUB ; Ju Dong YANG ; Omer LIRAN ; Brennan SPIEGEL ; Alexander KUO
Clinical and Molecular Hepatology 2023;29(3):721-732
Background/Aims:
Patients with cirrhosis and hepatocellular carcinoma (HCC) require extensive and personalized care to improve outcomes. ChatGPT (Generative Pre-trained Transformer), a large language model, holds the potential to provide professional yet patient-friendly support. We aimed to examine the accuracy and reproducibility of ChatGPT in answering questions regarding knowledge, management, and emotional support for cirrhosis and HCC.
Methods:
ChatGPT’s responses to 164 questions were independently graded by two transplant hepatologists and resolved by a third reviewer. The performance of ChatGPT was also assessed using two published questionnaires and 26 questions formulated from the quality measures of cirrhosis management. Finally, its emotional support capacity was tested.
Results:
We showed that ChatGPT regurgitated extensive knowledge of cirrhosis (79.1% correct) and HCC (74.0% correct), but only small proportions (47.3% in cirrhosis, 41.1% in HCC) were labeled as comprehensive. The performance was better in basic knowledge, lifestyle, and treatment than in the domains of diagnosis and preventive medicine. For the quality measures, the model answered 76.9% of questions correctly but failed to specify decision-making cut-offs and treatment durations. ChatGPT lacked knowledge of regional guidelines variations, such as HCC screening criteria. However, it provided practical and multifaceted advice to patients and caregivers regarding the next steps and adjusting to a new diagnosis.
Conclusions
We analyzed the areas of robustness and limitations of ChatGPT’s responses on the management of cirrhosis and HCC and relevant emotional support. ChatGPT may have a role as an adjunct informational tool for patients and physicians to improve outcomes.
3.Metformin and statins reduce hepatocellular carcinoma risk in chronic hepatitis C patients with failed antiviral therapy
Pei-Chien TSAI ; Chung-Feng HUANG ; Ming-Lun YEH ; Meng-Hsuan HSIEH ; Hsing-Tao KUO ; Chao-Hung HUNG ; Kuo-Chih TSENG ; Hsueh-Chou LAI ; Cheng-Yuan PENG ; Jing-Houng WANG ; Jyh-Jou CHEN ; Pei-Lun LEE ; Rong-Nan CHIEN ; Chi-Chieh YANG ; Gin-Ho LO ; Jia-Horng KAO ; Chun-Jen LIU ; Chen-Hua LIU ; Sheng-Lei YAN ; Chun-Yen LIN ; Wei-Wen SU ; Cheng-Hsin CHU ; Chih-Jen CHEN ; Shui-Yi TUNG ; Chi‐Ming TAI ; Chih-Wen LIN ; Ching-Chu LO ; Pin-Nan CHENG ; Yen-Cheng CHIU ; Chia-Chi WANG ; Jin-Shiung CHENG ; Wei-Lun TSAI ; Han-Chieh LIN ; Yi-Hsiang HUANG ; Chi-Yi CHEN ; Jee-Fu HUANG ; Chia-Yen DAI ; Wan-Long CHUNG ; Ming-Jong BAIR ; Ming-Lung YU ;
Clinical and Molecular Hepatology 2024;30(3):468-486
Background/Aims:
Chronic hepatitis C (CHC) patients who failed antiviral therapy are at increased risk for hepatocellular carcinoma (HCC). This study assessed the potential role of metformin and statins, medications for diabetes mellitus (DM) and hyperlipidemia (HLP), in reducing HCC risk among these patients.
Methods:
We included CHC patients from the T-COACH study who failed antiviral therapy. We tracked the onset of HCC 1.5 years post-therapy by linking to Taiwan’s cancer registry data from 2003 to 2019. We accounted for death and liver transplantation as competing risks and employed Gray’s cumulative incidence and Cox subdistribution hazards models to analyze HCC development.
Results:
Out of 2,779 patients, 480 (17.3%) developed HCC post-therapy. DM patients not using metformin had a 51% increased risk of HCC compared to non-DM patients, while HLP patients on statins had a 50% reduced risk compared to those without HLP. The 5-year HCC incidence was significantly higher for metformin non-users (16.5%) versus non-DM patients (11.3%; adjusted sub-distribution hazard ratio [aSHR]=1.51; P=0.007) and metformin users (3.1%; aSHR=1.59; P=0.022). Statin use in HLP patients correlated with a lower HCC risk (3.8%) compared to non-HLP patients (12.5%; aSHR=0.50; P<0.001). Notably, the increased HCC risk associated with non-use of metformin was primarily seen in non-cirrhotic patients, whereas statins decreased HCC risk in both cirrhotic and non-cirrhotic patients.
Conclusions
Metformin and statins may have a chemopreventive effect against HCC in CHC patients who failed antiviral therapy. These results support the need for personalized preventive strategies in managing HCC risk.
4.Artificial intelligence predicts direct-acting antivirals failure among hepatitis C virus patients: A nationwide hepatitis C virus registry program
Ming-Ying LU ; Chung-Feng HUANG ; Chao-Hung HUNG ; Chi‐Ming TAI ; Lein-Ray MO ; Hsing-Tao KUO ; Kuo-Chih TSENG ; Ching-Chu LO ; Ming-Jong BAIR ; Szu-Jen WANG ; Jee-Fu HUANG ; Ming-Lun YEH ; Chun-Ting CHEN ; Ming-Chang TSAI ; Chien-Wei HUANG ; Pei-Lun LEE ; Tzeng-Hue YANG ; Yi-Hsiang HUANG ; Lee-Won CHONG ; Chien-Lin CHEN ; Chi-Chieh YANG ; Sheng‐Shun YANG ; Pin-Nan CHENG ; Tsai-Yuan HSIEH ; Jui-Ting HU ; Wen-Chih WU ; Chien-Yu CHENG ; Guei-Ying CHEN ; Guo-Xiong ZHOU ; Wei-Lun TSAI ; Chien-Neng KAO ; Chih-Lang LIN ; Chia-Chi WANG ; Ta-Ya LIN ; Chih‐Lin LIN ; Wei-Wen SU ; Tzong-Hsi LEE ; Te-Sheng CHANG ; Chun-Jen LIU ; Chia-Yen DAI ; Jia-Horng KAO ; Han-Chieh LIN ; Wan-Long CHUANG ; Cheng-Yuan PENG ; Chun-Wei- TSAI ; Chi-Yi CHEN ; Ming-Lung YU ;
Clinical and Molecular Hepatology 2024;30(1):64-79
Background/Aims:
Despite the high efficacy of direct-acting antivirals (DAAs), approximately 1–3% of hepatitis C virus (HCV) patients fail to achieve a sustained virological response. We conducted a nationwide study to investigate risk factors associated with DAA treatment failure. Machine-learning algorithms have been applied to discriminate subjects who may fail to respond to DAA therapy.
Methods:
We analyzed the Taiwan HCV Registry Program database to explore predictors of DAA failure in HCV patients. Fifty-five host and virological features were assessed using multivariate logistic regression, decision tree, random forest, eXtreme Gradient Boosting (XGBoost), and artificial neural network. The primary outcome was undetectable HCV RNA at 12 weeks after the end of treatment.
Results:
The training (n=23,955) and validation (n=10,346) datasets had similar baseline demographics, with an overall DAA failure rate of 1.6% (n=538). Multivariate logistic regression analysis revealed that liver cirrhosis, hepatocellular carcinoma, poor DAA adherence, and higher hemoglobin A1c were significantly associated with virological failure. XGBoost outperformed the other algorithms and logistic regression models, with an area under the receiver operating characteristic curve of 1.000 in the training dataset and 0.803 in the validation dataset. The top five predictors of treatment failure were HCV RNA, body mass index, α-fetoprotein, platelets, and FIB-4 index. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the XGBoost model (cutoff value=0.5) were 99.5%, 69.7%, 99.9%, 97.4%, and 99.5%, respectively, for the entire dataset.
Conclusions
Machine learning algorithms effectively provide risk stratification for DAA failure and additional information on the factors associated with DAA failure.
5.Proliferating cell nuclear antigen (PCNA) overexpression in hepatocellular carcinoma predicts poor prognosis as determined by bioinformatic analysis.
Dan-Dan LI ; Jia-Wei ZHANG ; Rui ZHANG ; Jie-Hong XIE ; Kuo ZHANG ; Gui-Gao LIN ; Yan-Xi HAN ; Rong-Xue PENG ; Dong-Sheng HAN ; Jie WANG ; Jing YANG ; Jin-Ming LI
Chinese Medical Journal 2020;134(7):848-850