1.Celastrol activates caspase-3/GSDME-dependent pyroptosis in tumor cells by inducing endoplasmic reticulum stress
Jiajian Guo ; Dongxiao Cui ; Yuping Tang ; Sanjiao Wang ; Cuiyan Ma ; Wenfu Ma
Journal of Traditional Chinese Medical Sciences 2024;11(3):330-339
Objective:
To investigate the pyroptosis-inducing effects of celastrol on tumor cells and to explore the potential mechanisms involved, specifically focusing on the role of the caspase-3/gasdermin E (GSDME) signaling pathway and the impact of endoplasmic reticulum (ER) stress and autophagy.
Methods:
Necrostatin-1 (Nec-1), lactate dehydrogenase release (LDH) assay, and Hoechst/propidium iodide (PI) double staining were employed to validate the mode of cell death. Western blot was used to detect the cleavage of GSDME and the expression of light chain 3 (LC3) and BIP.
Results:
Celastrol induced cell swelling with large bubbles, which is consistent with the pyroptotic phenotype. Moreover, treatment with celastrol induced GSDME cleavage, indicating the activation of GSDME-mediated pyroptosis. GSDME knockout via CRISPR/Cas9 blocked the pyroptotic morphology of celastrol in HeLa cells. In addition, cleavage of GSDME was attenuated by a specific caspase-3 inhibitor in celastrol-treated cells, suggesting that GSDME activation was induced by caspase-3. Mechanistically, celastrol induced endoplasmic reticulum (ER) stress and autophagy in HeLa cells, and other ER stress inducers produced effects consistent with those of celastrol.
Conclusion
These findings suggest that celastrol triggers caspase-3/GSDME-dependent pyroptosis via activation of ER stress, which may shed light on the potential antitumor clinical applications of celastrol.
2.SARS-CoV-2 spike host cell surface exposure promoted by a COPI sorting inhibitor.
Yiqun LI ; Mingrui YANG ; Yanan NAN ; Jiaming WANG ; Sanjiao WANG ; Dongxiao CUI ; Jiajian GUO ; Pengfei HE ; Wenxin DAI ; Shuqi ZHOU ; Yue ZHANG ; Wenfu MA
Acta Pharmaceutica Sinica B 2023;13(7):3043-3053
Via an insufficient coat protein complex I (COPI) retrieval signal, the majority of SARS-CoV-2 spike (S) is resident in host early secretory organelles and a tiny amount is leaked out in cell surface. Only surface-exposed S can be recognized by B cell receptor (BCR) or anti-S therapeutic monoclonal antibodies (mAbs) that is the trigger step for B cell activation after S mRNA vaccination or infected cell clearance by S mAbs. Now, a drug strategy to promote S host surface exposure is absent. Here, we first combined structural and biochemical analysis to characterize S COPI sorting signals. A potent S COPI sorting inhibitor was then invented, evidently capable of promoting S surface exposure and facilitating infected cell clearance by S antibody-dependent cellular cytotoxicity (ADCC). Importantly, with the inhibitor as a probe, we revealed Omicron BA.1 S is less cell surface exposed than prototypes because of a constellation of S folding mutations, possibly corresponding to its ER chaperone association. Our findings not only suggest COPI is a druggable target against COVID-19, but also highlight SARS-CoV-2 evolution mechanism driven by S folding and trafficking mutations.