1.Construction of Sox9 gene eukaryotic expression vector and its inductive effects on directed differentiation of bone marrow stromal cells into precartilaginous stem cells in rats.
Weihua, HU ; Fengjing, GUO ; Feng, LI ; Hui, HUANG ; Weikai, ZHANG ; Anmin, CHEN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2009;29(3):291-5
Sox9 gene was cloned from immortalized precartilaginous stem cells and its eukaryotic expression vector constructed in order to explore the possibility of bone marrow-derived stromal cells differentiation into precartilaginous stem cells induced by Sox9. A full-length fragment of Sox9 was obtained by RT-PCR, inserted into pGEM-T Easy clone vector, and ligated with pEGFP-IRES2 expression vector by double digestion after sequencing. The compound plasmid was transfected into born marrow-derived stromal cells by Lipofectamine 2000, and the transfection efficacy and the expression of Sox9 and FGFR-3 were observed. Flow cytometry was used to identify the cell phenotype, and MTT was employed to assay proliferative viability of cells. Sequencing, restrictive endonuclease identification and RT-PCR confirmed that the expansion of Sox9 and construction of Sox9 expression vector were successful. After transfection of the recombinant vector into bone marrow-derived stromal cells, the expression of Sox9 and FGFR-3 was detected, and proliferative viability was not different from that of precartilaginous stem cells. It was concluded that Sox9 gene eukaryotic expression vector was successfully constructed, and the transfected bone marrow-derived stromal cells differentiated into the precartilaginous stem cells.
Base Sequence
;
Bone Marrow Cells/*cytology
;
Cartilage/*cytology
;
Cell Differentiation/genetics
;
Cells, Cultured
;
Cloning, Molecular
;
Genetic Vectors/genetics
;
Molecular Sequence Data
;
Receptor, Fibroblast Growth Factor, Type 3/metabolism
;
Recombinant Proteins/biosynthesis
;
Recombinant Proteins/genetics
;
SOX9 Transcription Factor/biosynthesis
;
SOX9 Transcription Factor/*genetics
;
Stem Cells/*cytology
;
Stromal Cells/*cytology
;
Transfection
2.Ectopic expression of cyclooxygenase-2-induced dedifferentiation in articular chondrocytes.
Won Kil LEE ; Seon Mi YU ; Seon Woo CHEONG ; Jong Kyung SONN ; Song Ja KIM
Experimental & Molecular Medicine 2008;40(6):721-727
Cyclooxygenase-2 (COX-2) is known to modulate bone metabolism, including bone formation and resorption. Because cartilage serves as a template for endochondral bone formation and because cartilage development is initiated by the differentiation of mesenchymal cells into chondrocytes (Ahrens et al., 1977; Sandell and Adler, 1999; Solursh, 1989), it is of interest to know whether COX-2 expression affect chondrocyte differentiation. Therefore, we investigated the effects of COX-2 protein on differentiation in rabbit articular chondrocyte and chick limb bud mesenchymal cells. Overexpression of COX-2 protein was induced by the COX-2 cDNA transfection. Ectopic expression of COX-2 was sufficient to causes dedifferentiation in articular chondrocytes as determined by the expression of type II collagen via Alcian blue staining and Western blot. Also, COX-2 overexpression caused suppression of SOX-9 expression, a major transcription factor that regulates type II collagen expression, as indicated by the Western blot and RT-PCR. We further examined ectopic expression of COX-2 in chondrifying mesenchymal cells. As expected, COX-2 cDNA transfection blocked cartilage nodule formation as determined by Alcian blue staining. Our results collectively suggest that COX-2 overexpression causes dedifferentiation in articular chondrocytes and inhibits chondrogenic differentiation of mesenchymal cells.
Animals
;
Cartilage, Articular/cytology
;
Cell Differentiation
;
Cells, Cultured
;
Chick Embryo
;
Chondrocytes/*cytology/enzymology
;
Chondrogenesis
;
Collagen Type II/metabolism
;
Cyclooxygenase 2/*biosynthesis/genetics
;
Interleukin-1beta/pharmacology
;
Mesenchymal Stem Cells/*cytology/enzymology
;
Rabbits
;
SOX9 Transcription Factor/metabolism
3.Updates of research on the relationship between SOX9 gene and human neoplasms.
Chinese Journal of Pathology 2010;39(9):646-648
Animals
;
Apoptosis
;
Bone Neoplasms
;
metabolism
;
pathology
;
Breast Neoplasms
;
metabolism
;
pathology
;
Cell Proliferation
;
Chondrosarcoma
;
metabolism
;
pathology
;
Colorectal Neoplasms
;
metabolism
;
pathology
;
Female
;
Humans
;
Male
;
Ovarian Neoplasms
;
metabolism
;
pathology
;
Prostatic Neoplasms
;
metabolism
;
pathology
;
RNA, Messenger
;
metabolism
;
SOX9 Transcription Factor
;
biosynthesis
;
genetics
;
physiology