1.Three-dimensional domain swapping as a mechanism to lock the active conformation in a super-active octamer of SARS-CoV main protease.
Shengnan ZHANG ; Nan ZHONG ; Fei XUE ; Xue KANG ; Xiaobai REN ; Jiaxuan CHEN ; Changwen JIN ; Zhiyong LOU ; Bin XIA
Protein & Cell 2010;1(4):371-383
Proteolytic processing of viral polyproteins is indispensible for the lifecycle of coronaviruses. The main protease (M(pro)) of SARS-CoV is an attractive target for anti-SARS drug development as it is essential for the polyprotein processing. M(pro) is initially produced as part of viral polyproteins and it is matured by autocleavage. Here, we report that, with the addition of an N-terminal extension peptide, M(pro) can form a domain-swapped dimer. After complete removal of the extension peptide from the dimer, the mature M(pro) self-assembles into a novel super-active octamer (AO-M(pro)). The crystal structure of AO-M(pro) adopts a novel fold with four domain-swapped dimers packing into four active units with nearly identical conformation to that of the previously reported M(pro) active dimer, and 3D domain swapping serves as a mechanism to lock the active conformation due to entanglement of polypeptide chains. Compared with the previously well characterized form of M(pro), in equilibrium between inactive monomer and active dimer, the stable AO-M(pro) exhibits much higher proteolytic activity at low concentration. As all eight active sites are bound with inhibitors, the polyvalent nature of the interaction between AO-M(pro) and its polyprotein substrates with multiple cleavage sites, would make AO-M(pro) functionally much more superior than the M(pro) active dimer for polyprotein processing. Thus, during the initial period of SARS-CoV infection, this novel active form AOM(pro) should play a major role in cleaving polyproteins as the protein level is extremely low. The discovery of AOM(pro) provides new insights about the functional mechanism of M(pro) and its maturation process.
Coronavirus
;
metabolism
;
Cysteine Endopeptidases
;
Endopeptidases
;
metabolism
;
Humans
;
Peptides
;
chemistry
;
metabolism
;
Polyproteins
;
chemistry
;
metabolism
;
Protein Binding
;
SARS Virus
;
chemistry
;
metabolism
;
Viral Proteins
2.New nsp8 isoform suggests mechanism for tuning viral RNA synthesis.
Shuang LI ; Qi ZHAO ; Yinjie ZHANG ; Yang ZHANG ; Mark BARTLAM ; Xuemei LI ; Zihe RAO
Protein & Cell 2010;1(2):198-204
During severe acute respiratory syndrome coronavirus (SARS-CoV) infection, the activity of the replication/transcription complexes (RTC) quickly peaks at 6 hours post infection (h.p.i) and then diminishes significantly in the late post-infection stages. This "down-up-down" regulation of RNA synthesis distinguishes different viral stages: primary translation, genome replication, and finally viron assembly. Regarding the nsp8 as the primase in RNA synthesis, we confirmed that the proteolysis product of the primase (nsp8) contains the globular domain (nsp8C), and indentified the resectioning site that is notably conserved in all the three groups of coronavirus. We subsequently crystallized the complex of SARS-CoV nsp8C and nsp7, and the 3-D structure of this domain revealed its capability to interfuse into the hexadecamer super-complex. This specific proteolysis may indicate one possible mechanism by which coronaviruses to switch from viral infection to genome replication and viral assembly stages.
Amino Acid Sequence
;
Crystallography, X-Ray
;
DNA Primase
;
chemistry
;
genetics
;
physiology
;
Humans
;
Isoenzymes
;
chemistry
;
genetics
;
physiology
;
Molecular Sequence Data
;
Protein Structure, Secondary
;
RNA, Viral
;
biosynthesis
;
SARS Virus
;
chemistry
;
genetics
;
physiology
;
Sequence Alignment
;
Severe Acute Respiratory Syndrome
;
virology
;
Virus Replication
3.Preparation and characterization of monoclonal antibodies against SARS-associated coronavirus nucleocapsid protein.
Yan-bin WANG ; Zhao-rui CHANG ; Jian-wei WANG ; Rong JI ; Chun-hui HAN ; Li ZHAO ; Li-li REN ; Yan-gong CHAO ; Jian-guo QU ; Cheng-yi QU ; Tao HUNG
Chinese Journal of Experimental and Clinical Virology 2004;18(4):316-320
OBJECTIVETo obtain monoclonal antibodies (McAbs) against severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) nucleocapsid (N) protein to develop diagnostic test for SARS and study the pathogenesis of the disease.
METHODSBALB/c mice were immunized with purified N protein of SARS-CoV. Hybridoma cell lines secreting monoclonal antibodies against SARS-associated coronavirus nucleocapsid were established after cell fusion with mouse splenic cells and SP2/0 cells. The specificity of the McAbs obtained was examined by Western blot and indirect fluorescence assay. Epitopes reacted with the McAbs were preliminarily located through Western blot by expressing truncated N proteins.
RESULTSAfter cell fusion and three rounds of cell cloning, six hybridoma cell lines secreting monoclonal antibodies specifically against SARS-CoV nucleocapsid were obtained. Western blot and indirect fluorescence assay showed that the McAbs reacted specifically with nucleocapsid protein and SARS-CoV. Among the six McAbs, three recognize the epitopes located in the N-terminus of the protein, whereas the others reacted with those located in the C-terminus.
CONCLUSIONThe anti-SARS-CoV nucleocapsid McAbs were developed and these McAbs may be useful in the development of diagnosis assays and basic research of SARS.
Animals ; Antibodies, Monoclonal ; biosynthesis ; immunology ; Antibodies, Viral ; biosynthesis ; immunology ; Antibody Specificity ; Female ; Hybridomas ; secretion ; Mice ; Mice, Inbred BALB C ; Nucleocapsid Proteins ; immunology ; isolation & purification ; SARS Virus ; chemistry ; immunology
4.Some research clues on Chinese herbal medicine for SARS prevention and treatment.
Pei-gen XIAO ; Yong-yan WANG ; Hong-shan CHEN
China Journal of Chinese Materia Medica 2003;28(6):481-483
OBJECTIVETo provide some research clues from Chinese herbal medicine for SARS prevention and treatment.
METHODAccording to the experience and information, to select several perspective candidates from anti-SARS effective TCM prescriptions and drugs.
RESULTA list of Chinese herbal medicine and more than 14 botanical taxa could be served for further anti-SARS investigation.
CONCLUSIONThis investigation indicated that Chinese herbal medicine will be an important source for ant-SARS new drug searching.
Animals ; Berberidaceae ; chemistry ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Ephedra ; chemistry ; Ferns ; chemistry ; Humans ; Phytotherapy ; Plants, Medicinal ; chemistry ; SARS Virus ; drug effects ; Severe Acute Respiratory Syndrome ; drug therapy ; prevention & control
5.Activation and maturation of SARS-CoV main protease.
Protein & Cell 2011;2(4):282-290
The worldwide outbreak of the severe acute respiratory syndrome (SARS) in 2003 was due to the transmission of SARS coronavirus (SARS-CoV). The main protease (M(pro)) of SARS-CoV is essential for the viral life cycle, and is considered to be an attractive target of anti-SARS drug development. As a key enzyme for proteolytic processing of viral polyproteins to produce functional non-structure proteins, M(pro) is first auto-cleaved out of polyproteins. The monomeric form of M(pro) is enzymatically inactive, and it is activated through homo-dimerization which is strongly affected by extra residues to both ends of the mature enzyme. This review provides a summary of the related literatures on the study of the quaternary structure, activation, and self-maturation of M(pro) over the past years.
Crystallography, X-Ray
;
Cysteine Endopeptidases
;
chemistry
;
metabolism
;
Enzyme Activation
;
Humans
;
Models, Molecular
;
Polyproteins
;
chemistry
;
metabolism
;
Protein Multimerization
;
Protein Structure, Tertiary
;
SARS Virus
;
chemistry
;
enzymology
;
Severe Acute Respiratory Syndrome
;
virology
;
Viral Proteins
;
chemistry
;
metabolism
6.Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode.
Shuai CHEN ; Felix JONAS ; Can SHEN ; Rolf HILGENFELD ; Rolf HIGENFELD
Protein & Cell 2010;1(1):59-74
The main protease (M(pro)) plays a vital role in proteolytic processing of the polyproteins in the replicative cycle of SARS coronavirus (SARS-CoV). Dimerization of this enzyme has been shown to be indispensable for trans-cleavage activity. However, the auto-processing mechanism of M(pro), i.e. its own release from the polyproteins through autocleavage, remains unclear. This study elucidates the relationship between the N-terminal autocleavage activity and the dimerization of "immature" M(pro). Three residues (Arg4, Glu290, and Arg298), which contribute to the active dimer conformation of mature M(pro), are selected for mutational analyses. Surprisingly, all three mutants still perform N-terminal autocleavage, while the dimerization of mature protease and trans-cleavage activity following auto-processing are completely inhibited by the E290R and R298E mutations and partially so by the R4E mutation. Furthermore, the mature E290R mutant can resume N-terminal autocleavage activity when mixed with the "immature" C145A/E290R double mutant whereas its trans-cleavage activity remains absent. Therefore, the N-terminal auto-processing of M(pro) appears to require only two "immature" monomers approaching one another to form an "intermediate" dimer structure and does not strictly depend on the active dimer conformation existing in mature protease. In conclusion, an auto-release model of M(pro) from the polyproteins is proposed, which will help understand the auto-processing mechanism and the difference between the autocleavage and trans-cleavage proteolytic activities of SARS-CoV M(pro).
Chromatography
;
Circular Dichroism
;
Cysteine Endopeptidases
;
chemistry
;
genetics
;
metabolism
;
Mutagenesis, Site-Directed
;
Polyproteins
;
chemistry
;
genetics
;
metabolism
;
Protein Multimerization
;
SARS Virus
;
chemistry
;
enzymology
;
genetics
;
Spectrometry, Fluorescence
;
Viral Proteins
;
chemistry
;
genetics
;
metabolism
7.The newly emerged SARS-like coronavirus HCoV-EMC also has an "Achilles' heel": current effective inhibitor targeting a 3C-like protease.
Zhilin REN ; Liming YAN ; Ning ZHANG ; Yu GUO ; Cheng YANG ; Zhiyong LOU ; Zihe RAO
Protein & Cell 2013;4(4):248-250
Binding Sites
;
Cysteine Endopeptidases
;
metabolism
;
Humans
;
Isoxazoles
;
chemistry
;
pharmacology
;
Protease Inhibitors
;
chemistry
;
metabolism
;
pharmacology
;
Protein Structure, Tertiary
;
Pyrrolidinones
;
chemistry
;
pharmacology
;
Rhinovirus
;
drug effects
;
SARS Virus
;
drug effects
;
enzymology
;
Severe Acute Respiratory Syndrome
;
virology
;
Viral Proteins
;
antagonists & inhibitors
;
metabolism
8.On interferon research.
Chinese Journal of Experimental and Clinical Virology 2005;19(3):205-206
9.The epitope study on the SARS-CoV nucleocapsid protein.
Shuting LI ; Liang LIN ; Hao WANG ; Jianning YIN ; Yan REN ; Zhe ZHAO ; Jie WEN ; Cuiqi ZHOU ; Xumin ZHANG ; Xiaolei LI ; Jingqiang WANG ; Zhengfeng ZHOU ; Jinxiu LIU ; Jianmin SHAO ; Tingting LEI ; Jianqiu FANG ; Ningzhi XU ; Siqi LIU
Genomics, Proteomics & Bioinformatics 2003;1(3):198-206
The nucleocapsid protein (N protein) has been found to be an antigenic protein in a number of coronaviruses. Whether the N protein in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is antigenic remains to be elucidated. Using Western blot and Enzyme-linked Immunosorbent Assay (ELISA), the recombinant N proteins and the synthesized peptides derived from the N protein were screened in sera from SARS patients. All patient sera in this study displayed strong positive immunoreactivities against the recombinant N proteins, whereas normal sera gave negative immunoresponses to these proteins, indicating that the N protein of SARS-CoV is an antigenic protein. Furthermore, the epitope sites in the N protein were determined by competition experiments, in which the recombinant proteins or the synthesized peptides competed against the SARS-CoV proteins to bind to the antibodies raised in SARS sera. One epitope site located at the C-terminus was confirmed as the most antigenic region in this protein. A detailed screening of peptide with ELISA demonstrated that the amino sequence from Codons 371 to 407 was the epitope site at the C-terminus of the N protein. Understanding of the epitope sites could be very significant for developing an effective diagnostic approach to SARS.
Blotting, Western
;
Enzyme-Linked Immunosorbent Assay
;
Epitopes
;
chemistry
;
immunology
;
Humans
;
Nucleocapsid Proteins
;
chemistry
;
immunology
;
Peptide Fragments
;
chemical synthesis
;
Plasmids
;
Recombinant Proteins
;
immunology
;
isolation & purification
;
metabolism
;
SARS Virus
;
genetics
;
immunology
;
metabolism
10.The cloning, expression and structural analysis of putative unknown protein Orf 9b in SARS-CoV.
Wen LI ; Yang LIU ; Lei LAN ; Ming-Nan LIU
Chinese Journal of Virology 2009;25(4):274-278
Orf 9b was amplified by PCR from SARS-CoV genome and cloned into the Nco I and Bam HI sites of the pET32c expression vector, and then recombinant plasmid pET32c-Orf 9b was constructed. The recombinant fusion protein Orf 9b was expressed by IPTG induction and purifed. After being cleaved by rEK, Orf 9b protein with MW 11 kD was separated and collected. It was demonstrated by ELISA that the purified Orf 9b protein could react with sera of SARS rehabilitaion patients but not with sera from healthy donors. CD and Infrared spectroscopy were used to predict the secondary structure of the purified Orf 9b protein. The distribution percentages for the the secondary structures of alpha-helix, beta-sheet, and random coil in the Orf 9b protein estimated by CD were 12.5%, 40%, and 47.5%, respectively, while the same parameters estimated by Infrared spectroscopy were 13.7%, 47.5%, and 37.9%, respectively. The results obtained by the two methods were substantially identical and showed that the structure of the Orf 9b protein consisted mostly of beta-sheet, and comprised only few alpha-helix. The acquisition of purified protein and the structural information presented herein may provide foundation for further functional study.
Antibodies, Viral
;
immunology
;
Cloning, Molecular
;
Gene Expression
;
Humans
;
Open Reading Frames
;
Protein Structure, Secondary
;
SARS Virus
;
chemistry
;
genetics
;
immunology
;
Severe Acute Respiratory Syndrome
;
immunology
;
virology
;
Viral Proteins
;
chemistry
;
genetics
;
immunology