1.The role of jigsaw karyotype analysis in the teaching of chromosomal recognition.
Chinese Journal of Medical Genetics 2023;40(3):374-377
Karyotype analysis is the basic method in cytogenetics, and is also recognized as the "gold standard" for diagnosing chromosomal disorders. The teaching and training for traditional karyotyping analysis is time-consuming and even boring. The individual's ability for mastering the chromosome morphology can vary greatly. Therefore, it is necessary to improve the teaching method. On the basis of the traditional method, we have added auxiliary analysis software during the teaching. This type of splicing karyotype teaching has increased the students' interest and improved their ability for karyotyping, allowing them to quickly remember the characteristic bands of chromosomes. Through enhanced memory of a large number of karyotypic images, the students' ability to recognize individual chromosomes has improved.
Humans
;
Karyotyping
;
Karyotype
;
Cytogenetics
;
RNA Splicing
;
Software
2.Emerging roles of spliceosome in cancer and immunity.
Hui YANG ; Bruce BEUTLER ; Duanwu ZHANG
Protein & Cell 2022;13(8):559-579
Precursor messenger RNA (pre-mRNA) splicing is catalyzed by an intricate ribonucleoprotein complex called the spliceosome. Although the spliceosome is considered to be general cell "housekeeping" machinery, mutations in core components of the spliceosome frequently correlate with cell- or tissue-specific phenotypes and diseases. In this review, we expound the links between spliceosome mutations, aberrant splicing, and human cancers. Remarkably, spliceosome-targeted therapies (STTs) have become efficient anti-cancer strategies for cancer patients with splicing defects. We also highlight the links between spliceosome and immune signaling. Recent studies have shown that some spliceosome gene mutations can result in immune dysregulation and notable phenotypes due to mis-splicing of immune-related genes. Furthermore, several core spliceosome components harbor splicing-independent immune functions within the cell, expanding the functional repertoire of these diverse proteins.
Humans
;
Neoplasms/metabolism*
;
RNA Precursors/metabolism*
;
RNA Splicing
;
RNA Splicing Factors/metabolism*
;
Spliceosomes/metabolism*
3.Roles of alternative splicing in infectious diseases: from hosts, pathogens to their interactions.
Mengyuan LYU ; Hongli LAI ; Yili WANG ; Yanbing ZHOU ; Yi CHEN ; Dongsheng WU ; Jie CHEN ; Binwu YING
Chinese Medical Journal 2023;136(7):767-779
Alternative splicing (AS) is an evolutionarily conserved mechanism that removes introns and ligates exons to generate mature messenger RNAs (mRNAs), extremely improving the richness of transcriptome and proteome. Both mammal hosts and pathogens require AS to maintain their life activities, and inherent physiological heterogeneity between mammals and pathogens makes them adopt different ways to perform AS. Mammals and fungi conduct a two-step transesterification reaction by spliceosomes to splice each individual mRNA (named cis -splicing). Parasites also use spliceosomes to splice, but this splicing can occur among different mRNAs (named trans -splicing). Bacteria and viruses directly hijack the host's splicing machinery to accomplish this process. Infection-related changes are reflected in the spliceosome behaviors and the characteristics of various splicing regulators (abundance, modification, distribution, movement speed, and conformation), which further radiate to alterations in the global splicing profiles. Genes with splicing changes are enriched in immune-, growth-, or metabolism-related pathways, highlighting approaches through which hosts crosstalk with pathogens. Based on these infection-specific regulators or AS events, several targeted agents have been developed to fight against pathogens. Here, we summarized recent findings in the field of infection-related splicing, including splicing mechanisms of pathogens and hosts, splicing regulation and aberrant AS events, as well as emerging targeted drugs. We aimed to systemically decode host-pathogen interactions from a perspective of splicing. We further discussed the current strategies of drug development, detection methods, analysis algorithms, and database construction, facilitating the annotation of infection-related splicing and the integration of AS with disease phenotype.
Animals
;
Alternative Splicing/genetics*
;
RNA Splicing
;
Spliceosomes/metabolism*
;
RNA, Messenger/metabolism*
;
Communicable Diseases/genetics*
;
Mammals/metabolism*
4.Clinical characteristics and genetic variant analysis of a child with Snijders Blok-Campeau syndrome.
Yuke LI ; Xiaona WANG ; Mengyuan LIU ; Yang GAO ; Baiyun CHEN ; Daoqi MEI ; Huichun ZHANG ; Chao GAO
Chinese Journal of Medical Genetics 2023;40(4):402-407
OBJECTIVE:
To analyze the clinical phenotype and genetic variant of a child with Snijders Blok-Campeau syndrome (SBCS).
METHODS:
A child who was diagnosed with SBCS in June 2017 at Henan Children's Hospital was selected as the study subject. Clinical data of the child was collected. Peripheral blood samples of the child and his parents were collected and the extraction of genomic DNA, which was subjected to trio-whole exome sequencing (trio-WES) and genome copy number variation (CNV) analysis. Candidate variant was verified by Sanger sequencing of his pedigree members.
RESULTS:
The main clinical manifestations of the child have included language delay, intellectual impairment and motor development delay, which were accompanied with facial dysmorphisms (broad forehead, inverted triangular face, sparse eyebrows, widely spaced eyes, narrow palpebral fissures, broad nose bridge, midface hypoplasia, thin upper lip, pointed jaw, low-set ears and posteriorly rotated ears). Trio-WES and Sanger sequencing revealed that the child has harbored a heterozygous splicing variant of the CHD3 gene, namely c.4073-2A>G, for which both of his parents were of wild-type. No pathogenic variant was identified by CNV testing.
CONCLUSION
The c.4073-2A>G splicing variant of the CHD3 gene probably underlay the SBCS in this patient.
DNA Copy Number Variations
;
Heterozygote
;
Pedigree
;
Phenotype
;
RNA Splicing
;
Mutation
5.Identification of neoantigens derived from alternative splicing and RNA modification
Genomics & Informatics 2019;17(3):e23-
The acquisition of somatic mutations is the most common event in cancer. Neoantigens expressed from genes with mutations acquired during carcinogenesis can be tumor-specific. Since the immune system recognizes tumor-specific peptides, they are potential targets for personalized neoantigen-based immunotherapy. However, the discovery of druggable neoantigens remains challenging, suggesting that a deeper understanding of the mechanism of neoantigen generation and better strategies to identify them will be required to realize the promise of neoantigen-based immunotherapy. Alternative splicing and RNA editing events are emerging mechanisms leading to neoantigen production. In this review, we outline recent work involving the large-scale screening of neoantigens produced by alternative splicing and RNA editing. We also describe strategies to predict and validate neoantigens from RNA sequencing data.
Alternative Splicing
;
Carcinogenesis
;
Humans
;
Immune System
;
Immunotherapy
;
Mass Screening
;
Peptides
;
RNA Editing
;
RNA
;
Sequence Analysis, RNA
6.Bioinformatics Analysis and Preliminary Functional Study of Abnormal Expression of Splicing Factors in Gastric Cancer.
Acta Academiae Medicinae Sinicae 2020;42(3):289-296
To analyze the expression of splicing factors in gastric cancer using bioinformatics methods and investigate the effect of aberrantly expressed serine/arginine-rich splicing factor(SRSF10)on the phenotype of gastric cancer cells. The RNA-seq data of gastric cancer and paracancerous tissues were downloaded from The Cancer Genome Atlas(TCGA)cancer database,and bioinformatics analysis was performed to obtain the splicing factors differentially expressed in gastric cancer.The splicing factor SRSF10 was selected to investigate its effect on the development of gastric cancer.RNA interference technology was used to construct SRSF10 knockdown gastric cancer cells.MTS,Transwell,and cell scratches were used to study the effect of SRSF10 knockdown on gastric cancer cell phenotype. A total of 48 splicing factors were identified in gastric cancer by a series of bioinformatics techniques,of which 35 were up-regulated and 13 were down-regulated.The splicing factor SRSF10,which was up-regulated,was selected for further study.It was found that the gastric cancer cells after SRSF10 knockdown proliferated more slowly and had lower migration ability than normal gastric cancer cells. Multiple splicing factors are found in gastric cancer and may play an important role in the development of gastric cancer.The splicing factor SRSF10 may contribute to the pathogenesis of gastric cancer.
Alternative Splicing
;
Cell Cycle Proteins
;
Computational Biology
;
Gene Expression Regulation, Neoplastic
;
Humans
;
RNA Splicing Factors
;
Repressor Proteins
;
Serine-Arginine Splicing Factors
;
Stomach Neoplasms
7.Deducing Isoform Abundance from Exon Junction Microarray.
Po Ra KIM ; S June OH ; Sang Hyuk LEE
Genomics & Informatics 2006;4(1):33-39
Alternative splicing (AS) is an important mechanism of producing transcriptome diversity and microarray techniques are being used increasingly to monitor the splice variants. There exist three types of microarrays interrogating AS events-junction, exon, and tiling arrays. Junction probes have the advantage of monitoring the splice site directly. Johnson et al., performed a genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays (Science 302:2141-2144, 2003), which monitored splicing at every known exon-exon junctions for more than 10,000 multi-exon human genes in 52 tissues and cell lines. Here, we describe an algorithm to deduce the relative concentration of isoforms from the junction array data. Non-negative Matrix Factorization (NMF) is applied to obtain the transcript structure inferred from the expression data. Then we choose the transcript models consistent with the ECgene model of alternative splicing which is based on mRNA and EST alignment. The probe-transcript matrix is constructed using the NMF-consistent ECgene transcripts, and the isoform abundance is deduced from the non-negative least squares (NNLS) fitting of experimental data. Our method can be easily extended to other types of microarrays with exon or junction probes.
Alternative Splicing
;
Cell Line
;
Exons*
;
Humans
;
Least-Squares Analysis
;
Protein Isoforms
;
RNA Precursors
;
RNA, Messenger
;
Transcriptome
8.RNA spliceosomal mutations in myeloid neoplasms.
Xiang-chou YANG ; Su-jiang ZHANG ; Hong-xia QIU
Chinese Journal of Hematology 2013;34(6):555-557
Hematologic Neoplasms
;
genetics
;
Humans
;
Mutation
;
RNA
;
genetics
;
RNA Splicing
;
Spliceosomes
;
genetics
9.A progress toward research on alternative splicing of genes in tumor cells.
Chinese Journal of Medical Genetics 2006;23(2):177-180
Alternative splicing of pre-mRNA is an important mechanism for regulating gene function at the post-transcription level and for producing proteomic diversity in higher eukaryotes. The alternative splicing is regulated by the interaction between diverse cis-acting elements and trans-acting factors. Alternative splicing events of oncogenes, tumor suppressor genes and metastasis suppressor genes are associated with the initiation and development of human neoplasms. The protein isoforms sourced from alternative splicing take part in regulating the gene transcription, cell cycle, apoptosis of cells, and playing a role in tumor growth. It is possible for molecular therapy to target directly isoforms of protein produced by alternative splicing or to interfere with the process of alternative splicing.
Alternative Splicing
;
genetics
;
Humans
;
Neoplasms
;
genetics
;
RNA Precursors
;
metabolism
;
RNA, Neoplasm
;
analysis
;
Transcription, Genetic
10.Altered Splicing in Stable Cell Strains Expressing Mini-hF9 Gene with Nonsense Mutation.
Gang WANG ; Wen-Wen SUN ; Lv-Kai ZHU ; Yan-Chun MA ; Xia-Lin ZHANG ; Jian-Hua ZHANG ; Juan REN ; Xiu-Yu QIN ; Lin-Hua YANG ; Bao-Feng CHAI
Journal of Experimental Hematology 2021;29(1):228-232
OBJECTIVE:
To investigate the molecular mechanism in stable cell strains expressing Mini-hF9 gene with nonsense mutation.
METHODS:
Mini-hF9 gene and its nonsense mutants were transfected into HeLa cells independently, and stable cell strains were obtained after G418 resistance screening and monoclonal transformation. The altered splicing and protein expression of mRNA in Mini-hF9 gene in stable cell strains were detected by using RT-PCR and Western blot.
RESULTS:
The wild type and nonsense mutated human coagulation factor IX stable cell strains were constructed successfully, which were named HeLa-F9-WT, HeLa-F9-M1 and HeLa-F9-M2. Only normal splicing Norm was detected in the wild-type cell strain HeLa-F9-WT; Norm and Alt-S1 splicing were detected in HeLa-F9-M1; while Norm, Alt-S1 and Alt-S2 splicing were detected in HeLa-F9-M2.
CONCLUSION
The nonsense associated altered splicing (NAS) pathway, which generated alternately spliced transcripts, might be triggered in coagulation factor IX gene with nonsense mutation.
Codon, Nonsense
;
Factor IX/metabolism*
;
HeLa Cells
;
Humans
;
Mutation
;
RNA Splicing
;
RNA, Messenger/metabolism*