1.Identifying COVID-19 confirmed patients at elevated risk for mortality and need of mechanical ventilation using a novel criteria for Hyperinflammatory Syndrome: A retrospective cohort, single-center, validation study
Jayvee Rho-an D. Descalsota ; Abdul Walli R. Cana ; Inofel I. Chin ; Jessie F. Orcasitas
Acta Medica Philippina 2025;59(3):104-115
BACKGROUND AND OBJECTIVES
A mounting evidence links dysregulated immune response to cases of fatal pneumonia seen in COVID-19 infection. We aimed to validate the COVID-19-associated Hyperinflammatory Syndrome (cHIS) score, a novel clinical tool devised to identify those at risk for adverse outcomes, in a local population and investigate the relationship of cHIS score taken at admission and the risk of mortality and the need of mechanical ventilation.
METHODSThis retrospective cohort study analyzed the sociodemographic, clinical, and laboratory data of 1,881 COVID-19 patients admitted at a tertiary hospital in Davao City, Philippines from January to December 2021. We calculated the cHIS score, composed of six clinical and laboratory criteria from admission, and used multivariate logistic regression to determine the risk of mortality and need of mechanical ventilation.
RESULTSThe cHIS score taken at admission, regardless of cut-off value, was a significant predictor of mortality (OR 0.979 [99% CI 0.894-1.064]) and need of mechanical ventilation (OR 0.586 [99% CI 0.4975-0.6745]). Using the Youden Index, a cut-off cHIS score of 3 or more was a better predictor of mortality (sensitivity, 88.59%; specificity, 71.72%), and a cut-off score of 2 or more was a better predictor of need of mechanical ventilation (sensitivity, 84.02%; specificity, 70.82%) than other cutoff cHIS scores.
CONCLUSIONAmong COVID-19 patients, the cHIS score at admission correlated with the risk of mortality and the need of mechanical ventilation. Cutoff scores of 3 and 2 had the optimal sensitivities and specificities to predict the risk of mortality and the need of mechanical ventilation, respectively.
Human ; Covid-19 ; Inflammation ; Mortality ; Mechanical Ventilation ; Respiration, Artificial ; Cytokine Storm ; Cytokine Release Syndrome
2.A signal sensing system for monitoring the movement of human respiratory muscle based on the thin-film varistor.
Yueyang YUAN ; Zhongping ZHANG ; Lixin XIE ; Haoxuan HUANG ; Wei LIU
Journal of Biomedical Engineering 2025;42(4):733-738
In order to accurately capture the respiratory muscle movement and extract the synchronization signals corresponding to the breathing phases, a comprehensive signal sensing system for sensing the movement of the respiratory muscle was developed with applying the thin-film varistor FSR402 IMS-C07A in this paper. The system integrated a sensor, a signal processing circuit, and an application program to collect, amplify and denoise electronic signals. Based on the respiratory muscle movement sensor and a STM32F107 development board, an experimental platform was designed to conduct experiments. The respiratory muscle movement data and respiratory airflow data were collected from 3 healthy adults for comparative analysis. In this paper, the results demonstrated that the method for determining respiratory phase based on the sensing the respiratory muscle movement exhibited strong real-time performance. Compared to traditional airflow-based respiratory phase detection, the proposed method showed a lead times ranging from 33 to 210 ms [(88.3 ± 47.9) ms] for expiration switched into inspiration and 17 to 222 ms [(92.9 ± 63.8) ms] for inspiration switched into expiration, respectively. When this system is applied to trigger the output of the ventilator, it will effectively improve the patient-ventilator synchrony and facilitate the ventilation treatment for patients with respiratory diseases.
Humans
;
Respiratory Muscles/physiology*
;
Signal Processing, Computer-Assisted
;
Movement/physiology*
;
Respiration
;
Monitoring, Physiologic/methods*
;
Adult
3.Establishment of a Nomogram model for individualized prediction of the risk of acute spinal cord injury complicated with respiratory dysfunction.
Jie LIU ; Su-Juan LIU ; Ran LI ; Wen-Jing ZHANG ; Yong WANG
China Journal of Orthopaedics and Traumatology 2025;38(5):525-531
OBJECTIVE:
To analyze the risk factors of acute spinal cord injury complicated with respiratory dysfunction, and to construct the clinical prediction model of acute spinal cord injury complicated with respiratory dysfunction.
METHODS:
Continuous 170 cases of acute spinal cord injury treated from April 2019 to October 2022 were retrospectively collected, and clinical data were uniformly collected. Patients were divided into respiratory dysfunction group 30 cases and non-respiratory dysfunction group 140 cases according to whether they had respiratory dysfunction during treatment. The predictive factors of acute spinal cord injury complicated with respiratory dysfunction were screened by Lasso analysis, and the risk factors of acute spinal cord injury complicated with respiratory dysfunction were screened by multivariate Logistic regression analysis. R(R4.2.1) software was used to establish a nomogram risk warning model for predicting acute spinal cord injury complicated with respiratory dysfunction, and Hosmer-Lemeshow test was used to evaluate the model fit. Finally, area under receiver operating characteristic(ROC) curve (AUC), calibration curve, and decision curve analysis(DCA) were used to evaluate the differentiation, calibration and clinical impact of the model.
RESULTS:
The incidence of respiratory dysfunction in 170 patients was 17.65%. Lasso regression analysis selected age, residence, marital status, smoking, hypertension, degree of paralysis, spinal cord injury plane, multiple injuries, spinal cord fracture and dislocation, and ASIA grade as the influencing factors. Multivariate Logistic regression analysis showed that age, smoking, degree of paralysis, level of spinal cord injury, spinal cord injury of fracture and dislocation, and ASIA grade were risk factors for acute spinal cord injury complicated with respiratory dysfunction. The prediction model of acute spinal cord injury complicated with respiratory dysfunction was established by Hosmer-Lemeshow test, χ2=5.830, P=0.67. The AUC value of the model was 0.912. DCA analysis showed that the net benefit value of nomogram prediction of acute spinal cord injury complicated with respiratory dysfunction was higher when threshold probability ranged from 1% to 100%.
CONCLUSION
This column chart can help identify the risk of acute spinal cord injury complicated with respiratory dysfunction in early clinical stage, facilitate early clinical decision-making and intervention, and has important guiding significance for optimizing clinical efficacy and improving prognosis of patients. It is expected to improve and verify this model with larger samples and multi-center in the future.
Humans
;
Spinal Cord Injuries/complications*
;
Nomograms
;
Male
;
Female
;
Middle Aged
;
Adult
;
Retrospective Studies
;
Risk Factors
;
Aged
;
Respiration Disorders/etiology*
;
Adolescent
;
Logistic Models
4.Application of intelligent oxygen management system in neonatal intensive care units: a scoping review.
Huan HE ; Qiu-Yi SUN ; Ying TANG ; Jin-Li DAI ; Han-Xin ZHANG ; Hua-Yun HE
Chinese Journal of Contemporary Pediatrics 2025;27(6):753-758
The intelligent oxygen management system is a software designed with various algorithms to automatically titrate inhaled oxygen concentration according to specific patterns. This system can be integrated into various ventilator devices and used during assisted ventilation processes, aiming to maintain the patient's blood oxygen saturation within a target range. This paper employs a scoping review methodology, focusing on research related to intelligent oxygen management systems in neonatal intensive care units. It reviews the fundamental principles, application platforms, and clinical outcomes of these systems, providing a theoretical basis for clinical implementation.
Humans
;
Intensive Care Units, Neonatal
;
Infant, Newborn
;
Oxygen/administration & dosage*
;
Oxygen Inhalation Therapy/methods*
;
Respiration, Artificial
5.Development of Non-Invasive Bi-Level Breathing Therapy System.
Zhiying YUAN ; Mingyue LI ; Jieying SHAN ; Kai WANG ; Jilun YE ; Xu ZHANG
Chinese Journal of Medical Instrumentation 2025;49(1):89-95
At present, there is no effective drug treatment for obstructive sleep apnea hypopnea syndrome (OSAHS). It is usually treated by mechanical ventilation through a ventilator. In this paper, a non-invasive bi-level breathing therapy system suitable for home scenarios is developed. The system supports single-level and bi-level positive airway pressure therapies, and introduces the function of inspiratory synchronous trigger based on flow monitoring to enhance the synchrony of patient-ventilator synchronization. The test results show that the performance indicators of the system meet expectations. Each ventilation mode can operate normally and can meet the requirements for the use of home non-invasive ventilators.
Humans
;
Sleep Apnea, Obstructive/therapy*
;
Equipment Design
;
Noninvasive Ventilation/instrumentation*
;
Respiration, Artificial
6.Risk factors and prognosis of first extubation failure in neonates undergoing invasive mechanical ventilation.
Mengyao WU ; Hui RONG ; Rui CHENG ; Yang YANG ; Keyu LU ; Fei SHEN
Journal of Central South University(Medical Sciences) 2025;50(8):1398-1407
OBJECTIVES:
Prolonged invasive mechanical ventilation is associated with increased risks of severe complications such as retinopathy of prematurity and bronchopulmonary dysplasia. Although neonatal intensive care unit (NICU) follow the principle of early extubation, extubation failure rates remain high, and reintubation may further increase the risk of adverse outcomes. This study aims to identify risk factors and short-term prognosis associated with first extubation failure in neonates, to provide evidence for effective clinical intervention strategies.
METHODS:
Clinical data of neonates who received invasive ventilation in the NICU of Children's Hospital of Nanjing Medical University from January 1, 2019, to December 31, 2021, were retrospectively collected. Neonates were divided into a successful extubation group and a failed extubation group based on whether reintubation occurred within 72 hours after the first extubation. Risk factors and short-term outcomes related to extubation failure were analyzed.
RESULTS:
A total of 337 infants were included, with 218 males (64.69%). Initial extubation failed in 34 (10.09%) infants. Compared with the successful extubation group, the failed extubation group had significantly lower gestational age [(31.37±5.14) weeks vs (34.44±4.07) weeks], age [2.5 (1.00, 8.25) h vs 5 (1.00, 22.00) h], birth weight [(1 818.97±1128.80) g vs (2 432.18±928.94) g], 1-minute Apgar score (6.91±1.90 vs 7.68±2.03), and the proportion of using mask oxygenation after extubation (21% vs 46%) (all P<0.05). Conversely, compared with the successful extubation group, the failed extubation group had significantly higher rates of vaginal delivery (59% vs 32%), caffeine use during mechanical ventilation (71% vs 38%), dexamethasone use at extubation (44% vs 17%), the highest positive end-expiratory pressure level within 72 hours post-extubation [6(5.00, 6.00) cmH2O vs 5 (0.00, 6.00) cmH2O] (1 cmH2O=0.098 kPa), the highest FiO2 within 72 hours post-extubation [(34.35±5.95)% vs (30.22±3.58)%], and duration of noninvasive intermittent positive pressure ventilation after extubation [0.5 (0.00, 42.00) hours vs 0 (0, 0) hours] (all P<0.05). Multivariate analysis identified gestational age <28 weeks (OR=5.570, 95% CI 1.866 to 16.430), age at NICU admission (OR=0.959, 95% CI 0.918 to 0.989), and a maximum FiO2≥35% within 72 hours post-extubation (OR=4.541, 95% CI 1.849 to 10.980) as independent risk factors for extubation failure (all P<0.05). Additionally, the failed extubation group exhibited significantly higher incidences of necrotizing enterocolitis grade II or above, moderate-to-severe bronchopulmonary dysplasia, severe bronchopulmonary dysplasia, retinopathy of prematurity, treatment abandonment due to poor prognosis, and discharge on home oxygen therapy (all P<0.05). Total hospital length of stay and total hospitalization costs were also significantly increased in the failed extubation group (all P<0.05).
CONCLUSIONS
Gestational age <28 weeks, younger age at NICU admission, and FiO2≥35% after extubation are high-risk factors for first extubation failure in neonates. Extubation failure markedly increases the risk of adverse clinical outcomes.
Humans
;
Infant, Newborn
;
Male
;
Female
;
Airway Extubation/adverse effects*
;
Risk Factors
;
Retrospective Studies
;
Respiration, Artificial/methods*
;
Intensive Care Units, Neonatal
;
Prognosis
;
Gestational Age
;
Bronchopulmonary Dysplasia
;
Infant, Premature
;
Treatment Failure
;
Intubation, Intratracheal
7.Non-invasive positive pressure ventilation for residual OSAHS with hypercapnia: a case report.
Liqiang YANG ; Shuyao QIU ; Jianwen ZHONG ; Xiangqian LUO ; Yilong ZHOU ; Jinhong ZENG ; Dabo LIU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(2):177-180
This case report outlines the treatment of an 11-year-old female who underwent adenotonsillectomy six years ago for snoring but experienced postoperative inefficacy. Her symptoms worsened two weeks before readmission, with increased snoring and sleep apnea, disabling her from lying down to sleep. She was readmitted on December 1, 2023, and diagnosed with severe obstructive sleep apnea hypopnea syndrome and hypercapnia. Automatic BiPAP alleviated her symptoms, with sleep breathing parameters normalizing during treatment. Follow-up at one month showed significant acceleration in her growth and resolution of her hypersomnolence issue.
Humans
;
Female
;
Child
;
Hypercapnia/complications*
;
Sleep Apnea, Obstructive/complications*
;
Positive-Pressure Respiration
;
Noninvasive Ventilation
8.Influence of voice training combined with active breathing and circulation technique on voice recovery after vocal cord polyp surgery.
Yajie GUAN ; Wen HE ; Xiaohui DU ; Ming WU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(4):324-332
Objective:To explore the influence of voice training combined with active breathing and circulation techniques on voice recovery following vocal cord polyp surgery. Methods:A total of 110 patients who underwent vocal cord polyp surgery at our hospital from May 2022 to November 2023 were selected and randomly divided into a control group (n=55) and a combination group (n=55) using a random number table method. During the recovery period, both groups received dietary control and aerosol treatment. The control group participated in voice training, while the combination group received active breathing and circulation techniques in addition to voice training for 2 months. Morphological changes, voice acoustic indicators (Shimmer, Jitter, Maximum Phonation Time[MPT]), and the Voice Handicap Index (VHI) were compared between the two groups, and clinical efficacy was evaluated. Results:The combination group demonstrated higher clinical efficacy after training compared to the control group, with a statistically significant difference (P<0.05). The proportion of incomplete closure, abnormal mucosal wave, and supraglottic compensation decreased in both groups after training (P<0.05). However, there was no significant difference in the proportions of incomplete closure and abnormal mucosal wave between the two groups (P>0.05). Notably, the proportion of patients with supraglottic compensation in the combination group was lower than in the control group (P<0.05). After training, the Shimmer and Jitter values decreased in both groups, with the combination group exhibiting lower values (P<0.05). Conversely, the MPT values increased in both groups, again with higher values in the combination group (P<0.05). Additionally, after training, the functional, physiological, and emotional scores of the VHI decreased in both groups, with the scores in the combination group lower than those in the control group, demonstrating statistical significance (P<0.05). Conclusion:Voice training combined with active breathing and circulation techniques has a beneficial effect on recovery following vocal cord polyp surgery. This combined approach significantly improves vocal cord morphology and acoustic indices, alleviates voice disorders, and enhances overall voice recovery.
Humans
;
Vocal Cords/surgery*
;
Polyps/surgery*
;
Voice Training
;
Male
;
Female
;
Voice Quality
;
Laryngeal Diseases/surgery*
;
Voice
;
Middle Aged
;
Adult
;
Respiration
9.Correlation analysis between mechanical power normalized to dynamic lung compliance and weaning outcomes and prognosis in mechanically ventilated patients: a prospective, observational cohort study.
Yao YAN ; Yongpeng XIE ; Zhiqiang DU ; Xiaojuan WANG ; Lu LIU ; Meng LI ; Xiaomin LI
Chinese Critical Care Medicine 2025;37(1):36-42
OBJECTIVE:
To explore the correlation between mechanical power normalized to dynamic lung compliance (Cdyn-MP) and weaning outcomes and prognosis in mechanically ventilated patients.
METHODS:
A prospective, observational cohort study was conducted. Patients who underwent invasive mechanical ventilation (IMV) for more than 24 hours and used a T-tube ventilation strategy for extubation in the intensive care unit (ICU) of Lianyungang First People's Hospital and Lianyungang Second People's Hospital between January 2022 and December 2023 were enrolled. The collected data encompassed patients' baseline characteristics, primary causes of ICU admission, vital signs and laboratory indicators during the initial spontaneous breathing trial (SBT), respiratory mechanics parameters within the 4-hour period prior to the SBT, weaning outcomes and prognostic indicators. Mechanical power (MP) and Cdyn-MP were calculated using a simplified MP equation. Univariate and multivariate Logistic regression analyses were utilized to determine the independent risk factors associated with weaning failure in patients undergoing mechanical ventilation. Restricted cubic spline (RCS) analysis and Spearman rank-sum test were employed to investigate the correlation between Cdyn-MP and weaning outcomes as well as prognosis. Receiver operator characteristic curve (ROC curve) was constructed, and the area under the ROC curve (AUC) was computed to evaluate the predictive accuracy of Cdyn-MP for weaning outcomes in mechanically ventilated patients.
RESULTS:
A total of 366 patients undergoing IMV were enrolled in this study, with 243 cases classified as successful weaning and 123 cases classified as failed weaning. Among them, 23 patients underwent re-intubation within 48 hours after the successful withdrawal of the first SBT, non-invasive ventilation, or died. Compared with the successful weaning group, the patients in the failed weaning group had significantly increased levels of sequential organ failure assessment (SOFA) score, body temperature and respiratory rate (RR) during SBT, and respiratory mechanical parameters within the 4-hour period prior to the SBT [ventilation frequency, positive end-expiratory pressure (PEEP), platform pressure (Pplat), peak inspiratory pressure (Ppeak), dynamic driving pressure (ΔPaw), fraction of inspired oxygen (FiO2), MP, and Cdyn-MP], dynamic lung compliance (Cdyn) was significantly reduced, and duration of IMV, ICU length of stay, and total length of hospital stay were significantly prolonged. However, there were no statistically significant differences in age, gender, body mass index (BMI), smoking history, main causes of ICU admission, other vital signs [heart rate (HR), mean arterial pressure (MAP), saturation of peripheral oxygen (SpO2)] and laboratory indicators [white blood cell count (WBC), albumin (Alb), serum creatinine (SCr)] during SBT of patients between the two groups. Univariate Logistic regression analysis was conducted, and variables with P < 0.05 and no multicollinearity with Cdyn-MP were selected for inclusion in the multivariate Logistic regression model. The results demonstrated that SOFA score [odds ratio (OR) = 1.081, 95% confidence interval (95%CI) was 1.008-1.160, P = 0.030], and PEEP (OR = 1.191, 95%CI was 1.075-1.329, P = 0.001), FiO2 (OR = 1.035, 95%CI was 1.006-1.068, P = 0.021) and Cdyn-MP (OR = 1.190, 95%CI was 1.086-1.309, P < 0.001) within the 4-hour period prior to the SBT were independent risk factors for weaning failure in patients undergoing IMV. The RCS analysis after adjusting for confounding factors showed that as Cdyn-MP within the 4-hour period prior to the SBT increased, the risk of weaning failure in patients undergoing IMV significantly increased (P < 0.001). The Spearman rank correlation test showed that Cdyn-MP within the 4-hour period prior to the SBT was positively correlated with respiratory mechanical parameters including ΔPaw and MP (r values were 0.773 and 0.865, both P < 0.01), and negatively correlated with Cdyn (r = -0.587, P < 0.01). Cdyn-MP within the 4-hour period prior to the SBT was positively correlated with prognostic indicators such as duration of IMV, length of ICU stay, and total length of hospital stay (r values were 0.295, 0.196, and 0.120, all P < 0.05). ROC curve analysis demonstrated that, within the 4-hour period preceding the SBT, Cdyn-MP, MP, Cdyn, and ΔPaw possessed predictive value for weaning failure in patients undergoing IMV. Notably, Cdyn-MP exhibited superior predictive capability, evidenced by an AUC of 0.761, with a 95%CI ranging from 0.712 to 0.810 (P < 0.001). At the optimal cut-off value of 408.5 J/min×cmH2O/mL×10-3, the sensitivity was 68.29%, and the specificity was 71.19%.
CONCLUSION
Cdyn-MP is related to weaning outcomes and prognosis in mechanically ventilated patients, and has good predictive ability in assessing the risk of weaning failure.
Humans
;
Prospective Studies
;
Ventilator Weaning
;
Prognosis
;
Respiration, Artificial
;
Intensive Care Units
;
Lung Compliance
;
Female
;
Male
;
Middle Aged
;
Aged
10.Design and application of an adjustable facial support pad for prone position ventilation.
Zhimin ZHANG ; Xiaojie CHEN ; Xinyu YAO ; Bin LI ; Yafang WANG ; Lin ZHANG
Chinese Critical Care Medicine 2025;37(1):70-72
In recent years, prone mechanical ventilation has been widely used to improve oxygenation dysfunction in critically ill patients. During prone mechanical ventilation, the patient's face is compressed for a long time, and due to the difficulty in changing, facial pressure injuries and ocular complications are common and severe. These complications increase patient discomfort, reduce their tolerance and compliance with prone ventilation, and even cause tracheal tube displacement or dislodgement, leading to significant clinical challenges. In order to change this situation, the medical staff of the department of critical care medicine of the Second People's Hospital of Hengshui and the department of critical care medicine of Harrison International Peace Hospital had developed an adjustable facial support pad for prone ventilation, and obtained a National Utility Model Patent of China (ZL 2022 2 3295294.4). The device is composed of a facial support platform, a supporting telescopic foot frame and so on. There are front, back, left and right adjustable tracks below the support cushion platform, which can be adjusted to the best state suitable for the patient's face shape, which can alleviate the facial pressure injuries and ocular complications caused by the different sizes of each patient's face, improve the patient's comfort, and reduce the incidence of facial pressure injury and the occurrence of ocular complications of the patient. The height of the platform is adjusted by the telescopic feet, and there is a hook assembly below, which can be fixed by the clamp of the ventilator tubing, so as to prevent the ventilator tubing from pulling the endotracheal intubation due to the gravity of condensation, resulting in the displacement or even prolapse of the tracheal intubation, and reducing the occurrence of adverse events of tracheal intubation. It is worth promoting in the clinic.
Humans
;
Respiration, Artificial/methods*
;
Prone Position
;
Equipment Design
;
Face


Result Analysis
Print
Save
E-mail