1.Activation of NF-κB and AP-1 Mediates Hyperproliferation by Inducing β-Catenin and c-Myc in Helicobacter pylori-Infected Gastric Epithelial Cells.
Eunyoung BYUN ; Bohye PARK ; Joo Weon LIM ; Hyeyoung KIM
Yonsei Medical Journal 2016;57(3):647-651
PURPOSE: In the gastric mucosa of Helicobacter pylori (H. pylori)-infected patients with gastritis or adenocarcinoma, proliferation of gastric epithelial cells is increased. Hyperproliferation is related to induction of oncogenes, such as β-catenin and c-myc. Even though transcription factors NF-κB and AP-1 are activated in H. pylori-infected cells, whether NF-κB or AP-1 regulates the expression of β-catenein or c-myc in H. pylori-infected cells has not been clarified. The present study was undertaken to investigate whether H. pylori-induced activation of NF-κB and AP-1 mediates the expression of oncogenes and hyperproliferation of gastric epithelial cells. MATERIALS AND METHODS: Gastric epithelial AGS cells were transiently transfected with mutant genes for IκBα (MAD3) and c-Jun (TAM67) or treated with a specific NF-κB inhibitor caffeic acid phenethyl ester (CAPE) or a selective AP-1 inhibitor SR-11302 to suppress activation of NF-κB or AP-1, respecively. As reference cells, the control vector pcDNA was transfected to the cells. Wild-type cells or transfected cells were cultured with or without H. pylori. RESULTS: H. pylori induced activation of NF-κB and AP-1, cell proliferation, and expression of oncogenes (β-catenein, c-myc) in AGS cells, which was inhibited by transfection of MAD3 and TAM67. Wild-type cells and the cells transfected with pcDNA showed similar activities of NF-κB and AP-1, proliferation, and oncogene expression regardless of treatment with H. pylori. Both CAPE and SR-11302 inhibited cell proliferation and expression of oncogenes in H. pylori-infected cells. CONCLUSION: H. pylori-induced activation of NF-κB and AP-1 regulates transcription of oncogenes and mediates hyperproliferation in gastric epithelial cells.
Blotting, Western
;
Caffeic Acids
;
Cell Line, Tumor
;
Cell Proliferation
;
DNA, Bacterial/analysis/genetics
;
DNA-Binding Proteins/*metabolism
;
Epithelial Cells/*metabolism
;
Gastric Mucosa/*metabolism/pathology
;
Gastritis/pathology
;
Gene Expression Regulation, Bacterial
;
Helicobacter Infections/metabolism/pathology/physiopathology
;
Helicobacter pylori/pathogenicity/physiology
;
Humans
;
NF-kappa B/antagonists & inhibitors/*biosynthesis/metabolism
;
Peptide Fragments
;
Phenylethyl Alcohol/analogs & derivatives
;
Proto-Oncogene Proteins c-jun
;
Repressor Proteins
;
Transcription Factor AP-1/*biosynthesis
;
Transcription Factors/*metabolism
;
beta Catenin/*metabolism
2.Binding of Shewanella FadR to the fabA fatty acid biosynthetic gene: implications for contraction of the fad regulon.
Huimin ZHANG ; Beiwen ZHENG ; Rongsui GAO ; Youjun FENG
Protein & Cell 2015;6(9):667-679
The Escherichia coli fadR protein product, a paradigm/prototypical FadR regulator, positively regulates fabA and fabB, the two critical genes for unsaturated fatty acid (UFA) biosynthesis. However the scenario in the other Ɣ-proteobacteria, such as Shewanella with the marine origin, is unusual in that Rodionov and coworkers predicted that only fabA (not fabB) has a binding site for FadR protein. It raised the possibility of fad regulon contraction. Here we report that this is the case. Sequence alignment of the FadR homologs revealed that the N-terminal DNA-binding domain exhibited remarkable similarity, whereas the ligand-accepting motif at C-terminus is relatively-less conserved. The FadR homologue of S. oneidensis (referred to FadR_she) was over-expressed and purified to homogeneity. Integrative evidence obtained by FPLC (fast protein liquid chromatography) and chemical cross-linking analyses elucidated that FadR_she protein can dimerize in solution, whose identity was determined by MALDI-TOF-MS. In vitro data from electrophoretic mobility shift assays suggested that FadR_she is almost functionally-exchangeable/equivalent to E. coli FadR (FadR_ec) in the ability of binding the E. coli fabA (and fabB) promoters. In an agreement with that of E. coli fabA, S. oneidensis fabA promoter bound both FadR_she and FadR_ec, and was disassociated specifically with the FadR regulatory protein upon the addition of long-chain acyl-CoA thioesters. To monitor in vivo effect exerted by FadR on Shewanella fabA expression, the native promoter of S. oneidensis fabA was fused to a LacZ reporter gene to engineer a chromosome fabA-lacZ transcriptional fusion in E. coli. As anticipated, the removal of fadR gene gave about 2-fold decrement of Shewanella fabA expression by β-gal activity, which is almost identical to the inhibitory level by the addition of oleate. Therefore, we concluded that fabA is contracted to be the only one member of fad regulon in the context of fatty acid synthesis in the marine bacteria Shewanella genus.
Amino Acid Sequence
;
Bacterial Proteins
;
chemistry
;
metabolism
;
Base Sequence
;
Binding Sites
;
DNA, Bacterial
;
metabolism
;
Escherichia coli
;
genetics
;
metabolism
;
Fatty Acid Synthase, Type II
;
genetics
;
metabolism
;
Fatty Acids
;
biosynthesis
;
Gene Expression Regulation, Bacterial
;
drug effects
;
Molecular Sequence Data
;
Oleic Acid
;
pharmacology
;
Protein Binding
;
drug effects
;
Regulon
;
genetics
;
Repressor Proteins
;
chemistry
;
metabolism
;
Shewanella
;
genetics
;
metabolism
3.miR-200c inhibits metastasis of breast cancer cells by targeting HMGB1.
Bao-ping CHANG ; Dong-sheng WANG ; Jian-wu XING ; Shao-hua YANG ; Qian CHU ; Shi-ying YU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(2):201-206
miR-200c has been shown to regulate the epithelial-mesenchymal transition (EMT) by inhibiting ZEB1 and ZEB2 expression in breast cancer cells. This study further examined the role of miR-200c in the invasion and metastasis of breast cancer that goes beyond the regulation on ZEB1 and ZEB2 expression. In this study, the bioinformatics software (miRanda) was used to predict the target gene of miR-200c and Renilla luciferase assay to verify the result. The metastatic breast cancer cells MDA-MB-231 were cultured and transfected with the miR-200c mimic or inhibitor. The expressions of miR-200c and HMGB1 were detected by RT-PCR and Western blotting, respectively. Transwell assay and wound healing assay were employed to examine the invasive and migrating ability of transfected cells. Target prediction and Renilla luciferase analysis revealed that HMGB1 was a putative target gene of miR-200c. After transfection of MDA-MB-231 cells with the miR-200c mimic or inhibitor, the expression of miR-200c was significantly increased or decreased when compared with cells transfected with the miR-200c mimic NC or inhibitor NC. Moreover, the expression of HMGB1 was reversely correlated with that of miR-200c in transfected cells. Tranwell assay showed that the number of invasive cells was significantly reduced in miR-200c mimic group when compared with miR-200c inhibitor group. It was also found that the migrating ability of cells transfected with miR-200c mimics was much lower than that of cells transfected with miR-200c inhibitors. It was suggested that miR-200c can suppress the invasion and migration of breast cancer cells by regulating the expression of HMGB1. miR-200c and HMGB1 may become useful biomarkers for progression of breast cancer and targets of gene therapy.
Biomarkers, Tumor
;
Breast Neoplasms
;
genetics
;
metabolism
;
Cell Movement
;
genetics
;
Epithelial-Mesenchymal Transition
;
genetics
;
Female
;
Gene Expression Regulation, Neoplastic
;
HEK293 Cells
;
HMGB1 Protein
;
genetics
;
Homeodomain Proteins
;
biosynthesis
;
Humans
;
MicroRNAs
;
genetics
;
Neoplasm Invasiveness
;
genetics
;
Neoplasm Metastasis
;
genetics
;
pathology
;
Repressor Proteins
;
biosynthesis
;
Transcription Factors
;
biosynthesis
;
Zinc Finger E-box Binding Homeobox 2
;
Zinc Finger E-box-Binding Homeobox 1
4.Expression of cancer-testis antigen in multiple myeloma.
Li HE ; Jing-na JI ; Shang-qin LIU ; Er XUE ; Qing LIANG ; Zi MA
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(2):181-185
Recently, the immunotherapy has been highlighted among cancer treatments. Cancer-testis antigen (CTA) has been studied in a variety of solid tumors because of its specific expression in tumors, and testis, ovary and placenta tissues, but not in other normal tissues. In order to provide a new approach for multiple myeloma (MM) immunotherapy, we examined the CTA expression in MM cell lines, and primary myeloma cells in patients with MM. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to detect the mRNA expression of MAGE-C1/CT7, SSX1, SSX2 and SSX4 in MM cell lines of RPMI-8226 and U266, and bone marrow (BM) cells of 25 MM patients and 18 healthy volunteers. The results showed that the 4 CTAs were expressed in RPMI-8226 and U266 cell lines. The positive expression rate of MAGE-C1/CT7, SSX1, SSX2 and SSX4 in the BM cells of 25 MM patients was 28% (7/25), 80% (20/25), 40% (10/25) and 68% (17/25), respectively. In contrast, the expression of any member of the CTAs was not detected in BM cells of 18 healthy volunteers. The expression of two or more CTAs was detected in 80% (20/25) MM patients, and that of at least one CTA in 88% (22/25). The mRNA expression levels of SSX1 and SSX4 were significantly higher in patients with MM at stage III than in those at stage I and II (P<0.05). No statistically significant differences were observed in the mRNA expression levels of MAGE-C1/CT7 and SSX2 in further stratified analyses by age, gender, MM types and percentage of MM cells in BM (P>0.05). In conclusion, our present study showed that MAGE-C1/CT7, SSX1, SSX2 and SSX4 were co-expressed in MM cell lines and the primary myeloma cells in MM patients, but not expressed in BM cells of healthy subjects. The mRNA levels of SSX1 and SSX4 are associated with MM clinical stage. This work may provide a new insight into MM immunotherapy in the future.
Adult
;
Aged
;
Antigens, Neoplasm
;
biosynthesis
;
Cell Line, Tumor
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Male
;
Middle Aged
;
Multiple Myeloma
;
genetics
;
pathology
;
Neoplasm Proteins
;
biosynthesis
;
Neoplasm Staging
;
Repressor Proteins
;
biosynthesis
;
Reverse Transcriptase Polymerase Chain Reaction
5.Expression and characterization of ArgR, an arginine regulatory protein in Corynebacterium crenatum.
Xue Lan CHEN ; Bin ZHANG ; Li TANG ; Hai Tao JIAO ; Heng Yi XU ; Feng XU ; Hong XU ; Hua WEI ; Yong Hua XIONG
Biomedical and Environmental Sciences 2014;27(6):436-443
OBJECTIVECorynebacterium crenatum MT, a mutant from C. crenatum AS 1.542 with a lethal argR gene, exhibits high arginine production. To confirm the effect of ArgR on arginine biosynthesis in C. crenatum, an intact argR gene from wild-type AS 1.542 was introduced into C. crenatum MT, resulting in C. crenatum MT. sp, and the changes of transcriptional levels of the arginine biosynthetic genes and arginine production were compared between the mutant strain and the recombinant strain.
METHODSQuantitative real-time polymerase chain reaction was employed to analyze the changes of the related genes at the transcriptional level, electrophoretic mobility shift assays were used to determine ArgR binding with the argCJBDF, argGH, and carAB promoter regions, and arginine production was determined with an automated amino acid analyzer.
RESULTSArginine production assays showed a 69.9% reduction in arginine from 9.01 ± 0.22 mg/mL in C. crenatum MT to 2.71 ± 0.13 mg/mL (P<0.05) in C. crenatum MT. sp. The argC, argB, argD, argF, argJ, argG, and carA genes were down-regulated significantly in C. crenatum MT. sp compared with those in its parental C. crenatum MT strain. The electrophoretic mobility shift assays showed that the promoter regions were directly bound to the ArgR protein.
CONCLUSIONThe arginine biosynthetic genes in C. crenatum are clearly controlled by the negative regulator ArgR, and intact ArgR in C. crenatum MT results in a significant descrease in arginine production.
Arginine ; biosynthesis ; Bacterial Proteins ; chemistry ; genetics ; metabolism ; Corynebacterium ; genetics ; metabolism ; Gene Expression Regulation, Bacterial ; Repressor Proteins ; chemistry ; genetics ; metabolism
6.Influence of nagE and manX knockout with red homologous recombination on the microbial production of glucosamine by Escherichia coli.
Xin CHEN ; Long LIU ; Jianghua LI ; Jie LIU ; Guocheng DU ; Jian CHEN
Chinese Journal of Biotechnology 2012;28(3):305-319
Glucosamine (GlcN), also called amino sugar, is a compound derived from the substitution of a hydroxyl group of glucose molecule with an amino group. GlcN finds a wide-range of applications in health food and pharmaceutical industries. In our previous research, a recombinant Escherichia coli-glms-gnal was constructed for the efficient production of GlcN and N-acetylglucosamine (GlcNAc), the latter can be readily deacetylated to GlcN under mild acidic conditions. However, the results indicated that the titer of GlcN and GlcNAc decreased significantly due to the transportation of GlcN and GlcNAc from the culture broth to the inside of cells. To alleviate or block the transportation process, nagE gene (encoding for the GlcNAc-specific transporter) and manX gene (encoding for the mannose transporter) were knocked out with the Red homologous recombination method, and two engineered strains, E. coli-glms-gna1-delta nagE (with nagE gene deletion) and E. coli-glms-gna1-delta nagE-delta manX (with nagE and manX genes deletion), were successfully constructed. The two strains were cultured in a 7-L fermentor for the production of GlcN and GlcNAc. The maximal GlcN concentration of control strain E. coli-glms-gnal reached 4.06 g/L, and the maximal GlcNAc concentration reached 41.46 g/L. The maximal GlcN and GlcNAc concentration of E. coli-glms-gna1-delta nagE reached 4.38 g/L and 71.80 g/L, respectively, which were 1.08-fold and 1.70-fold of those of E. coli-glms-gnal, respectively. The maximal GlcN and GlcNAc concentration of E. coli-glms-gnal-delta nagE-delta manX reached 4.82 g/L and 118.78 g/L, respectively, which were 1.20-fold and 2.86-fold of those of E. coli-glms-gnal, respectively. These results suggested that the deletion of nagE and manX could significantly increase the extracellular accumulation of GlcN and GlcNAc. The results obtained here maybe useful for the microbial GlcN production in an industrial scale.
Acetylglucosamine
;
biosynthesis
;
genetics
;
Escherichia coli
;
genetics
;
metabolism
;
Escherichia coli Proteins
;
genetics
;
Gene Knockout Techniques
;
Glucosamine
;
biosynthesis
;
genetics
;
Repressor Proteins
;
genetics
7.Construction of a recombinant adenovirus Ad5F35-SD-EGFP and its effect on K562 cell proliferation.
Jing SHI ; Jing HU ; Qing XIAO ; Zhi PENG ; Wei-xi CAO ; Qiu-ping LUO ; Fang WANG ; Wen-li FENG
Journal of Southern Medical University 2011;31(11):1806-1811
OBJECTIVETo construct a recombinant adenovirus vector for SH2-DED fusion gene and assess its inhibitory effect on the proliferation of K562 cells.
METHODSSH2-DED fusion gene and its mutant SH2mt-DED were amplified by splicing PCR and cloned into pAdTrack-CMV plasmid separately to construct the shuttle plasmids pAdT-SD-EGFP and pAdT-SmD-EGFP, respectively. After Pme I digestion, the shuttle plasmids were transformed into ultra-competent pAd5F35-BJ5183 cells to generate defective adenovirus vectors pAd5F35-SD-EGFP and pAd5F35- SmD-EGFP by homologous recombination. The vectors, linearized by Pac I digestion, were further transfected into AD293 cells for packaging and amplified by infecting AD293 cells repeatedly. K562 cells were then infected by the recombinant adenoviruses and the expression of SD was detected by Western blotting. MTT assay and flow cytometry were used to investigate the effect of Ad5F35-SD-EGFP and Ad5F35-SmD-EGFP on the proliferation of K562 cells.
RESULTSThe recombinant adenovirus vectors pAd5F35-SD-EGFP and pAd5F35-SmD-EGFP were constructed correctly, with a titer reaching 1.5×10(12) pfu/ml after amplification. Western blotting demonstrated that the target proteins were effectively expressed in transfected K562 cells. MTT assay and flow cytometry showed that transfection with pAd5F35-SD-EGFP resulted in growth inhibition rate of 55.21% in K562 cells, significantly higher than the inhibition rate of 17.95% following transfection with pAd5F35- SmD-EGFP and 7.33% following PBS treatment (P<0.05).
CONCLUSIONThe recombinant adenovirus vector Ad5F35-SD-EGFP we constructed can significantly inhibit the proliferation of K562 cells in vitro.
Adenoviridae ; genetics ; metabolism ; Apoptosis Regulatory Proteins ; biosynthesis ; genetics ; Cell Proliferation ; drug effects ; Cloning, Molecular ; Genetic Vectors ; Green Fluorescent Proteins ; biosynthesis ; genetics ; Humans ; K562 Cells ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive ; pathology ; Mutant Proteins ; genetics ; Recombinant Fusion Proteins ; biosynthesis ; genetics ; Repressor Proteins ; biosynthesis ; genetics ; Shc Signaling Adaptor Proteins ; biosynthesis ; genetics ; Transfection
8.Prokaryotic expression and purification of N-terminal and C-terminal fragments of histone deacetylase 4.
Yang YANG ; Xiao-cui QIN ; Shu-hu LIU ; Wei HUANG ; Xue-min WANG
Journal of Southern Medical University 2010;30(4):712-715
OBJECTIVETo express and purify the fusion proteins of glutathione S-transferase (GST)-N-terminal of histone deacetylase4 (HDAC4-N') (1-1952 bp) and GST- C-terminal of HDAC4 (HDAC4-C') (1708-3255 bp) in E.coli.
METHODSThe DNA fragments (HDAC4-N' and HDAC4-C') amplified by PCR were ligated into GST fusion vector (pGEX-6P-1) to construct the recombinant plasmids. After identification with restriction digestion and DNA sequencing, the recombinant plasmids were transformed into E.coli BL21 and induced by IPTG for their expression. After identification by SDS-PAGE and Western blotting, the target proteins were purified by glutathione sepharose 4B.
RESULTSThe results of restriction digestion and DNA sequencing confirmed successful construction of the recombinant plasmids. The relative molecular masses of the fusion proteins were approximately 110500 and 93080 as shown by SDS-PAGE. Western blotting demonstrated that the fusion proteins could be recognized by the specific anti-HDAC4 antibody.
CONCLUSIONWe have successfully constructed the recombinant expression vectors of pGEX-6P-1/HDAC4-N' and pGEX-6P-1/HDAC4-C' and induced the expression of the fusion proteins, which may facilitate functional studies of HDAC4 with other proteins.
Escherichia coli ; genetics ; metabolism ; Genetic Vectors ; genetics ; Glutathione Transferase ; biosynthesis ; genetics ; Histone Deacetylases ; biosynthesis ; genetics ; Humans ; Peptide Fragments ; Recombinant Fusion Proteins ; biosynthesis ; genetics ; isolation & purification ; Repressor Proteins ; biosynthesis ; genetics
9.Construction of prokaryotic expression vector of HPV16E6 gene and its expression.
Fangyi PENG ; Hairong JIANG ; Fangliang PENG ; Weibing ZHAO ; Zhihua LIN ; Yuanxiang CHEN ; Shengzhen CHEN
Journal of Biomedical Engineering 2010;27(4):847-850
Prokaryotic expression vector of mouse HPV16E6 gene was constructed. A pair of primers were designed according to the digestion sites in plasmid pGEX-KG and the HPV16E6 gene sequence published by GenBank. The DNA fragment of 321bp was amplified by PCR from the HPV recombinant plasmid with HPV16E6 gene, then cloned into pGEX-KG and transformed into the host E. coli strain JM109. The fragment was conformed to the original sequence, which indicated that fusion expression vector pGEX-KG-HPV16E6 was constructed. The pGEX-KG-HPV16E6 plasmid was taken and transformed into BL21(DE3) for expression. Induced by IPTG at 37 degrees C, the expression product of HPV16E6 gene was identified by SDS-PAGE and Western blot. HPV16E6 fusion protein had been expressed successfully in the form of inclusion bodies, the molecular weight of fusion protein being 38 kD. Meanwhile, the optimum condition of HPV16E6 fusion protein expression was induced with 1.0 mmol/L IPTG for 4h. The fusion protein reacted specifically with the antibodies against HPV16E6. HPV16E6 gene was successfully expressed in E. coli, which could be used as a basis for preparing HPV16E6 vaccine in human.
Escherichia coli
;
genetics
;
metabolism
;
Genetic Vectors
;
genetics
;
Glutathione Transferase
;
biosynthesis
;
genetics
;
Humans
;
Oncogene Proteins, Viral
;
biosynthesis
;
genetics
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
immunology
;
Repressor Proteins
;
biosynthesis
;
genetics
;
Viral Vaccines
;
immunology
10.Preparation and application of polyclonal antibody of human transcription factor CTCF N terminus protein.
Yingchun ZHANG ; Lei JIANG ; Ling WEI ; Xinjuan CHAI ; Yajun GE ; Yang QIN
Journal of Biomedical Engineering 2010;27(2):379-383
To investigate the function of CTCF and understand the pathogenesis of tumors better, we produced rabbit polyclonal antibody of human transcription factor CTCF protein and detected its expression in several kinds of human cancer cells and tissues. GST fusion protein of human CTCF-N domain was purified by GSTrap-FF affinity chromatography and was successfully expressed under induction of IPTG in E. coli BL21. Western blotting analysis demonstrated that the polyclonal antibody can recognize the endogenous CTCF from HepG2, MCF-7 and HeLa cells specifically. The produced antibodies can be used for gene expression regulation and tissue distribution study at protein level.
Animals
;
Antibodies
;
immunology
;
metabolism
;
CCCTC-Binding Factor
;
Escherichia coli
;
genetics
;
metabolism
;
Genetic Vectors
;
genetics
;
Glutathione Transferase
;
biosynthesis
;
genetics
;
HeLa Cells
;
Hep G2 Cells
;
Humans
;
Rabbits
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
immunology
;
Repressor Proteins
;
biosynthesis
;
genetics
;
immunology

Result Analysis
Print
Save
E-mail