1.Salvianolic acid A attenuates ischemia reperfusion induced rat brain damage by protecting the blood brain barrier through MMP-9 inhibition and anti-inflammation.
Wen ZHANG ; Jun-Ke SONG ; Xue ZHANG ; Qi-Meng ZHOU ; Guo-Rong HE ; Xiao-Na XU ; Yan RONG ; Wen-Xia ZHOU ; Guan-Hua DU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(3):184-193
Salvianolic acid A (SAA) is a water-soluble component from the root of Salvia Miltiorrhiza Bge, a traditional Chinese medicine, which has been used for the treatment of cerebrovascular diseases for centuries. The present study aimed to determine the brain protective effects of SAA against cerebral ischemia reperfusion injury in rats, and to figure out whether SAA could protect the blood brain barrier (BBB) through matrix metallopeptidase 9 (MMP-9) inhibition. A focal cerebral ischemia reperfusion model was induced by middle cerebral artery occlusion (MCAO) for 1.5-h followed by 24-h reperfusion. SAA was administered intravenously at doses of 5, 10, and 20 mg·kg. SAA significantly reduced the infarct volumes and neurological deficit scores. Immunohistochemical analyses showed that SAA treatments could also improve the morphology of neurons in hippocampus CA1 and CA3 regions and increase the number of neurons. Western blotting analyses showed that SAA downregulated the levels of MMP-9 and upregulated the levels of tissue inhibitor of metalloproteinase 1 (TIMP-1) to attenuate BBB injury. SAA treatment significantly prevented MMP-9-induced degradation of ZO-1, claudin-5 and occludin proteins. SAA also prevented cerebral NF-κB p65 activation and reduced inflammation response. Our results suggested that SAA could be a promising agent to attenuate cerebral ischemia reperfusion injury through MMP-9 inhibition and anti-inflammation activities.
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
Blood-Brain Barrier
;
drug effects
;
enzymology
;
immunology
;
Brain
;
Brain Ischemia
;
drug therapy
;
enzymology
;
genetics
;
Caffeic Acids
;
administration & dosage
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Lactates
;
administration & dosage
;
Male
;
Matrix Metalloproteinase 9
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury
;
enzymology
;
genetics
;
immunology
;
prevention & control
;
Salvia miltiorrhiza
;
chemistry
;
Tissue Inhibitor of Metalloproteinase-1
;
genetics
;
metabolism
;
Transcription Factor RelA
;
genetics
;
immunology
2.Effects of acidification pretreatment for respiratory acidosis on the expression of matrix metalloproteinase-9 in rat lung tissues following ischemia/reperfusion.
Liangchao QU ; Yan JIAO ; Zhangjie JIANG ; Zhiping SONG ; Weilu ZHAO
Journal of Central South University(Medical Sciences) 2018;43(11):1177-1181
To establish rat model of lung ischemia/reperfusion (IR) in vivo, and to explore the effects of acidification pretreatment for respiratory acidosis on the expression of matrix metalloproteinase-9 (MMP-9) and the possible mechanisms.
Methods: A total of 36 male Sprague-Dawley rats were divided into a sham group (S group), a IR group, and an experiment group (RA group) (n=12 in each group). The rat left lung hilum in the S group was dissociated, followed by perfusion without ischemia. After the left lung hilum in the IR group was blocked for 45 min, the rats were followed by reperfusion for 180 min. After left lung hilum in the RA group was dissociated, the respiratory parameters were adjusted so that pressure of end tidal carbon dioxide (PETCO2) reached 56-65 mmHg (1 mmHg=0.133 kPa) for 5 min, then the rats was subjected to IR. Lung tissue wet/dry (W/D) and lung permeability index (LPI) were calculated, while the lung histopathology was observed and the MMP-9 protein expression were measured.
Results: Compared with the control group, the W/D and LPI in the IR group and the RA group increased after reperfusion (both P<0.05), and the levels of W/D and LPI in the group RA were lower than that in the IR group (P<0.05). LPI and pathology scores were significantly lower in the RA group than those in the IR group (both P<0.01). After IR, the expression of MMP9 in the lung tissues in the IR group and the RA group increased significantly (both P<0.01). The expression of MMP-9 protein in the RA group was significantly lower than that in the IR group (P<0.01).
Conclusion: After lung IR injury, the expression of MMP-9 protein, vascular permeability and inflammatory exudation is increased. The acidification pretreatment for respiratory acidosis can inhibit the expression of MMP-9 protein and reduce inflammatory exudation after lung IR, showing a protective effect on lung IR injury.
Acidosis, Respiratory
;
drug therapy
;
prevention & control
;
Animals
;
Gene Expression Regulation, Enzymologic
;
drug effects
;
Lung
;
enzymology
;
Lung Injury
;
enzymology
;
Male
;
Matrix Metalloproteinase 9
;
genetics
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury
;
drug therapy
;
prevention & control
3.Salvianolate reduces murine myocardial ischemia and reperfusion injury via ERK1/2 signaling pathways in vivo.
Jian-Yong QI ; Juan YU ; Dong-Hui HUANG ; Li-Heng GUO ; Lei WANG ; Xin HUANG ; Hai-Ding HUANG ; Miao ZHOU ; Min-Zhou ZHANG ; Jiashin WU
Chinese journal of integrative medicine 2017;23(1):40-47
OBJECTIVETo analyze the effects of salvianolate on myocardial infarction in a murine in vivo model of ischemia and reperfusion (I/R) injury.
METHODSMyocardial I/R injury model was constructed in mice by 30 min of coronary occlusion followed by 24 h of reperfusion and pretreated with salvianolate 30 min before I/R (SAL group). The SAL group was compared with SHAM (no I/R and no salvianolate), I/R (no salvianolate), and ischemia preconditioning (IPC) groups. Furthermore, an ERK1/2 inhibitor PD98059 (1 mg/kg), and a phosphatidylinositol-3-kinase (PI3-K) inhibitor, LY294002 (7.5 mg/kg), were administered intraperitoneal injection (i.p) for 30 min prior to salvianolate, followed by I/R surgery in LY and PD groups. By using a double staining method, the ratio of the infarct size (IS) to left ventricle (LV) and of risk region (RR) to LV were compared among the groups. Correlations between IS and RR were analyzed. Western-blot was used to detect the extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (AKT) phosphorylation changes.
RESULTSThere were no significant differences between RR to LV ratio among the SHAM, I/R, IPC and SAL groups (P>0.05). The SAL and IPC groups had IS of 26.1%±1.4% and 22.3%±2.9% of RR, respectively, both of which were significantly smaller than the I/R group (38.5%±2.9% of RR, P<0.05, P<0.01, respectively). Moreover, the phosphorylation of ERK1/2 was increased in SAL group (P<0.05), while AKT had no significant change. LY294002 further reduced IS, whereas the protective role of salvianolate could be attenuated by PD98059, which increased the IS. Additionally, the IS was not linearly related to the RR (r=0.23, 0.45, 0.62, 0.17, and 0.52 in the SHAM, I/R, SAL, LY and PD groups, respectively).
CONCLUSIONSalvianolate could reduce myocardial I/R injury in mice in vivo, which involves an ERK1/2 pathway, but not a PI3-K signaling pathway.
Animals ; Blotting, Western ; Cardiotonic Agents ; pharmacology ; therapeutic use ; Flavonoids ; pharmacology ; Heart Ventricles ; drug effects ; pathology ; MAP Kinase Signaling System ; drug effects ; Male ; Mice, Inbred C57BL ; Mitogen-Activated Protein Kinase 1 ; metabolism ; Mitogen-Activated Protein Kinase 3 ; metabolism ; Myocardial Reperfusion Injury ; drug therapy ; enzymology ; pathology ; Organ Size ; drug effects ; Phosphorylation ; drug effects ; Plant Extracts ; chemistry ; pharmacology ; therapeutic use ; Protein Kinase Inhibitors ; pharmacology ; Staining and Labeling
4.Protective effect against myocardial ischemia reperfusion injuries induced by hyperoside preconditioning and its relationship with PI3K/Akt signaling pathway in rats.
Jun HAN ; Jia-Li XUAN ; Hao-Ran HU ; Zhi-Wu CHEN
China Journal of Chinese Materia Medica 2015;40(1):118-123
To investigate the protective effect of preconditioning with hyperoside ( Hyp) against myocardial ischemia-reperfusion injury (MIRI) in rats and the role of PI3K/Akt signaling pathway. MIRI was established by ligation of left anterior descending coronary artery for 30 min followed by reperfusion for 120 min in rats. Male SD rats were randomly divided into five groups: sham group,model group (MIRI),Hyp preconditioning group(Hyp), Hyp preconditioning + LY294002 (a PI3K/Akt signaling pathway inhibitor) group (Hyp + LY), and LY294002 group (LY). At the end of reperfusion, hemodynamic parameters were recorded as left ventricular systolic pressure (LVSP) , left ventricular end-diastolic pressure ( LVEDP) and maximal rate of increase and decrease of left ventricular pressure (± dP/dt(max)). Myocardial infaret size, the oxidative stress markers, myocardial enzymes indicators and inflammatory factors were also analyzed. The expressions of Akt, p-Akt, Bax and Bcl-2 proteins was detected by using Western blot method. The results showed that Hyp preconditioning remarkably improved cardiac constriction and relaxation function, reduced myocardial infarct size and enhanced the activities of oxidative stress markers about correlated to MIRI, such as superoxide dismutase (SOD), catalase (CAT) and glutathione-peroxidase (GSH-Px) and decreased the contents of malondialdehyde (MDA) as compared with MIRI group. Simultaneouly, the levels of myocardial enzymes, i. e. creatine kinase ( CK) and creatine kinase MB isoenzyme (CK-MB), and inflammatory factors, for instance tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) were decreased. Hyp pretreatment apparently restrained myocardial apoptosis as evidenced by decreasing the level of Bax expression, increasing the levels of phosphorylation of Akt and Bcl-2 expression. These effects were inhibited by LY294002, a blocker of PI3K/Akt signaling pathway. These findings indicated that the cardioprotection of Hyp preconditioning against MIRI may be related to activating PI3K/Akt signaling pathway, upregulating the expression of BCL-2 protein and down-regulating the expression of Bax protein.
Animals
;
Creatine Kinase
;
genetics
;
metabolism
;
Drugs, Chinese Herbal
;
administration & dosage
;
Heart
;
drug effects
;
Humans
;
Interleukin-6
;
genetics
;
metabolism
;
Ischemic Preconditioning, Myocardial
;
Male
;
Malondialdehyde
;
metabolism
;
Myocardial Reperfusion Injury
;
drug therapy
;
enzymology
;
genetics
;
prevention & control
;
Phosphatidylinositol 3-Kinases
;
genetics
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
genetics
;
metabolism
;
Quercetin
;
administration & dosage
;
analogs & derivatives
;
Rats
;
Rats, Sprague-Dawley
;
bcl-2-Associated X Protein
;
genetics
;
metabolism
5.Mitochondrial aldehyde dehydrogenase in myocardial ischemia-reperfusion injury: from bench to bedside.
Jiao-Jiao PANG ; Linzi A BARTON ; Yu-Guo CHEN ; Jun REN
Acta Physiologica Sinica 2015;67(6):535-544
Acute myocardial infarction is one of the major causes of mortality worldwide. Reperfusion in a timely fashion is the most effective way to limit infarct size. However, reperfusion can itself prompt further myocardial injury. This phenomenon is commonly known as myocardial ischemia-reperfusion (IR) injury. Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme metabolizing acetaldehyde and toxic aldehydes. Increasing evidence has revealed a cardioprotective role of ALDH2 in myocardial IR injury. Evidence from animal studies has shown that ALDH2 diminishes acute myocardial infarct size, ameliorates cardiac dysfunction and prevents reperfusion arrhythmias. The activity of ALDH2 is severely compromised if it is encoded by the mutant ALDH2*2 gene, with an incidence of approximately 40% in Asian populations. Epidemiological surveys in the Asian population have depicted that ALDH2 polymorphism is closely associated with higher prevalence of acute myocardial infarction and coronary artery disease. Therefore, targeting ALDH2 may represent a promising avenue to protect against IR injury. This review recapitulates the underlying mechanisms involved in the protective effect of ALDH2 in cardiac IR injury. Translational potential of ALDH2 in the management of coronary heart disease is also discussed.
Aldehyde Dehydrogenase
;
metabolism
;
Animals
;
Heart
;
physiopathology
;
Humans
;
Mitochondria, Heart
;
enzymology
;
Myocardial Reperfusion Injury
;
Myocardium
;
pathology
6.Protective effect of Shenxiong injection on cerebral ischemia-reperfusion injury of rats.
Xing-Yu WANG ; Yu-Yan ZHANG ; Hai-Tong WAN ; Tao ZHAO ; Wei FU ; Hui-Fen ZHOU ; Peng ZHOU ; Ze-Feng WANG ; Jie-Hong YANG
China Journal of Chinese Materia Medica 2014;39(3):503-506
OBJECTIVETo study the protective effect of Shenxiong injection on the cerebral ischemia-reperfusion injury of senile rats.
METHODTotally 108 Sprague-Dawley (SD) rats were randomly divided into the sham operation group, the model group, the Ni-modipine group and Shenxiong injection groups (low, middle, and high doses). The rat brain ischemia-reperfusion model was established by the middle cerebral artery occlusion (MCAO) method in rats, in order to observe the effect of Shenxiong injection on neurological score and brain infarct volume of rats with cerebral ischemia-reperfusion injury, and determine the contents of NOS, NO, SOD, MDA and LDH in brain tissues. The contents of TNF-alpha and IL-1beta levels in brain tissues were measured by enzyme-linked immunosorbent assay (ELISA) method.
RESULTShenxiong injection could significantly decrease neurological score, injury degree of brain tissues and brain infarct volume of rats with cerebral ischemia-reperfusion injury, increase the vigor of SOD, decrease the levels of MDA, NO, NOS and LDH, and inhibit IL-1beta and TNF-alpha expressions.
CONCLUSIONShenxiong injection has the obvious protective effect on the brain ischemia-reperfusion injury in rats. Its mechanism may be related to the improvement of neurological function, the reduction of free radical injury, and the inhibition of inflammation factor expression.
Animals ; Brain ; blood supply ; drug effects ; metabolism ; Brain Ischemia ; complications ; Drugs, Chinese Herbal ; administration & dosage ; pharmacology ; therapeutic use ; Injections ; L-Lactate Dehydrogenase ; metabolism ; Male ; Malondialdehyde ; metabolism ; Nitric Oxide ; metabolism ; Nitric Oxide Synthase ; metabolism ; Rats ; Rats, Sprague-Dawley ; Reperfusion Injury ; complications ; drug therapy ; enzymology ; metabolism ; Superoxide Dismutase ; metabolism
7.Glucocorticoid receptor agonist dexamethasone attenuates renal ischemia/reperfusion injury by up-regulating eNOS/iNOS.
Jiong ZHANG ; Jun-hua LI ; Le WANG ; Min HAN ; Fang XIAO ; Xiao-qin LAN ; Yue-qiang LI ; Gang XU ; Ying YAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(4):516-520
The aim of this study was to determine the effect of dexamethasone (DEX) on renal ischemia/reperfusion injury (IRI). C57BL/6 mice were randomly divided into Sham group, IRI group and DEX group. The mice in IRI and DEX groups subjected to renal ischemia for 60 min, were treated with saline or DEX (4 mg/kg, i.p.) 60 min prior to I/R. After 24 h of reperfusion, the renal function, renal pathological changes, activation of extracellular signal-regulated kinase (ERK) and glucocorticoid receptor (GR), and the levels of iNOS and eNOS were detected. The results showed DEX significantly decreased the damage to renal function and pathological changes after renal IRI. Pre-treatment with DEX reduced ERK activation and down-regulated the level of iNOS, whereas up-regulated the level of eNOS after renal IRI. DEX could further promote the activation of GR. These findings indicated GR activation confers preconditioning-like protection against acute IRI partially by up-regulating the ratio of eNOS/iNOS.
Animals
;
Dexamethasone
;
pharmacology
;
Gene Expression Regulation, Enzymologic
;
drug effects
;
Glucocorticoids
;
pharmacology
;
Male
;
Mice
;
Nitric Oxide Synthase Type II
;
biosynthesis
;
Nitric Oxide Synthase Type III
;
biosynthesis
;
Receptors, Glucocorticoid
;
agonists
;
Reperfusion Injury
;
enzymology
;
pathology
;
Up-Regulation
;
drug effects
8.Effects of compound Shenhua tablet on renal tubular Na+-K+-ATPase in rats with acute ischemic reperfusion injury.
Yue YANG ; Ri-bao WEI ; Xiao-yong ZHENG ; Qiang QIU ; Shao-yuan CUI ; Zhong YIN ; Suo-zhu SHI ; Xiang-mei CHEN
Chinese journal of integrative medicine 2014;20(3):200-208
OBJECTIVETo observe the effect of Compound Shenhua Tablet (, SHT) on the sodium-potassium- exchanging adenosinetriphosphatase (Na(+)-K(+)-ATPase) in the renal tubular epithelial cells of rats with acute ischemic reperfusion and to investigate the mechanisms underlying the effects of SHT on renal ischemic reperfusion injury (RIRI).
METHODSFifty male Wistar rats were randomly divided into the sham surgery group, model group, astragaloside group [150 mg/(kg·d)], SHT low-dose group [1.5 g/(kg·d)] and SHT high-dose group [3.0 g/(kg·d)], with 10 rats in each group. After 1 week of continuous intragastric drug administration, surgery was performed to establish the model. At either 24 or 72 h after the surgery, 5 rats in each group were sacrificed, blood biochemistry, renal pathology, immunoblot and immunohistochemical examinations were performed, and double immunofluorescence staining was observed under a laser confocal microscope.
RESULTSCompared with the sham surgery group, the serum creatinine (SCr) and blood urea nitrogen (BUN) levels were significantly increased, Na(+)-K(+)-ATPase protein level was decreased, and kidney injury molecule-1 (KIM-1) protein level was increased in the model group after the surgery (P<0.01 or P<0.05). Compared with the model group, the SCr, BUN, pathological scores, Na(+)-K(+)-ATPase, and the KIM-1 protein level of the three treatment groups were significantly improved at 72 h after the surgery (P<0.05 or P<0.01). And the SCr, BUN of the SHT low- and high-dose groups, and the pathological scores of the SHT high-dose group were significantly lower than those of the astragaloside group (P<0.05). The localizations of Na(+)-K(+)-ATPase and megalin of the model group were disrupted, with the distribution areas overlapping with each other and alternately arranged. The severity of the disruption was slightly milder in three treatment groups compared with that of the model group. The results of immunofluorescence staining showed that the SHT high-dose group had a superior effect as compared with the astragaloside group and the SHT low-dose group.
CONCLUSIONSThe SHT effectively alleviated RIRI caused by ischemic reperfusion, promoted the recovery of the polarity of renal tubular epithelial cells, and protected the renal tubules. The therapeutic effects of SHT were superior to those of astragaloside as a single agent.
Acute Disease ; Animals ; Blood Urea Nitrogen ; Cell Adhesion Molecules ; metabolism ; Chromatography, Liquid ; Creatinine ; blood ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Fluorescent Antibody Technique ; Immunoblotting ; Kidney Function Tests ; Kidney Tubules ; blood supply ; drug effects ; enzymology ; pathology ; Low Density Lipoprotein Receptor-Related Protein-2 ; metabolism ; Male ; Rats ; Rats, Wistar ; Reperfusion Injury ; drug therapy ; enzymology ; pathology ; Saponins ; analysis ; Sodium-Potassium-Exchanging ATPase ; metabolism ; Staining and Labeling ; Tablets
9.Ischemic postconditioning attenuates pneumocyte apoptosis after lung ischemia/reperfusion injury via inactivation of p38 MAPK.
Hai-E CHEN ; Ying-Chun MA ; Jin-Bo HE ; Lin-Jing HUANG ; Dan CHEN ; Lei YING ; Wan-Tie WANG
Chinese Journal of Applied Physiology 2014;30(3):251-256
OBJECTIVETo investigate the role of p38 MAPK on ischemic postconditioning (IPO) attenuating pneumocyte apoptosis after lung ischemia/reperfusion injury (LIRI).
METHODSForty adult male SD rats were randomly divided into 5 groups based upon the intervention (n = 8): control group (C), LIR group (I/R), LIR + IPO group (IPO), IPO + solution control group (D), IPO + SB203580 group (SB). Left lung tissue was isolated after the 2 hours of reperfusion, the ratio of wet lung weight to dry lung weight (W/D), and total lung water content (TLW) were measured. The histological structure of the left lung was observed under light and electron transmission microscopes, and scored by alveolar damage index of quantitative assessment (IQA). Apoptosis index (AI) of lung tissue was determined by terminal deoxynuleotidyl transferase mediated dUTP nick end and labeling (TUNEL) method. The mRNA expression and protein levels of and Bax were measured by RT-PCR and quantitative immunohistochemistry (IHC).
RESULTSCompared with C group, W/D, TLW, IQA, AI and the expression of Bax of I/R were significantly increased, the expression of Bcl-2 and Bcl-2/Bax were significantly decreased (P < 0.05, P < 0.01), and was obviously morphological abnormality in lung tissue. Compared with I/R group, all the indexes of IPO except for the expression of Bcl-2 and Bcl-2/ Bax were obviously reduced, the expression of Bcl-2 and Bcl-2/Bax were increased (P < 0.05, P < 0.01). All the indexes between D and IPO were little or not significant( P > 0.05). The expression of Bcl-2 and Bcl-2/Bax of SB were significantly increased and other indexes were reduced than those of IPO (P < 0.05, P < 0.01).
CONCLUSIONIPO may attenuate pneumocyte apoptosis in LIRI by inactivation of p38 MAPK, up-regulating expression of Bcl-2/Bax ratio.
Alveolar Epithelial Cells ; cytology ; Animals ; Apoptosis ; Disease Models, Animal ; Ischemic Postconditioning ; Lung ; blood supply ; enzymology ; pathology ; Male ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Rats ; Rats, Sprague-Dawley ; Reperfusion Injury ; enzymology ; pathology ; prevention & control ; bcl-2-Associated X Protein ; metabolism ; p38 Mitogen-Activated Protein Kinases ; metabolism
10.Effect of ischemic postconditioning on the expression of myocardium matrix metalloproteinase-2 induced by ischemia/reperfusion in rats.
Yan-Zhen LU ; Jia WANG ; Juan SONG ; Cui-Ying ZHANG ; Jing-Quan JI ; Bao-Hong LI ; Xiao-Xia TIAN ; Xiao-Liang SONG
Chinese Journal of Applied Physiology 2014;30(1):81-84
OBJECTIVETo investigate the effect of ischemic postconditioning on the expression of rat myocardium matris metalloproteinase-2 (MMP-2) induced by ischemia/reperfusion (I/R) and relationship between its expression and interstitium and the effect on left ventricular function.
METHODSTwenty-four rats were randomly divided into 3 groups (n = 8): sham control (SC) group, ischemic/reperfusion (I/R) group and ischemic postconditioning (IPTC) group. The left ventricular peak systolic pressure and its derivate (+/- dp/dt) were calculated; The amount of myocardium collagenous were determined; The vitality of superoxide dismutase (SOD) and content of malondialdehyde (MDA) of plasma were detected; The activity of myocardium MMP-2 was measured by Western blot and RT-PCR.
RESULTSAs compared with I/R group, IPTC could lower the expression of MMP-2, ameliorate left ventricular function and increase the content of myocardium collagenous. In the meantime, the vitality of superoxide dismutase (SOD) of plasma were greatly enhanced and the content of malondialdehyde (MDA) of plasma were reduced in IFC group.
CONCLUSIONProtective effect of IPIC on myocardium may be due to reduce free radical, lower expression of MMP-2 and protect myocardial interstitium. MMPs plays an important role in the myocardial protection provided by IPTC.
Animals ; Collagen ; metabolism ; Ischemic Postconditioning ; Malondialdehyde ; metabolism ; Matrix Metalloproteinase 2 ; metabolism ; Myocardial Reperfusion Injury ; enzymology ; Myocardium ; metabolism ; Rats ; Rats, Sprague-Dawley ; Superoxide Dismutase ; metabolism

Result Analysis
Print
Save
E-mail