1.Dexmedetomidine alleviates hepatic ischemia-reperfusion injury by regulating MALAT1/miR-126-5p/HMGB1 axis.
Xin-Gang MA ; Ye LIU ; Ming-Xi XUE
Acta Physiologica Sinica 2021;73(2):253-262
The aim of this study was to investigate the effects of dexmedetomidine (Dex) on hepatic ischemia/reperfusion injury (HIRI) and the underlying mechanism. The in vitro HIRI was induced by culturing HL-7702 cells, a human hepatocyte cell line, under 24 h of hypoxia and 12 h of reoxygenation. Quantitative real time PCR (qRT-PCR) and Western blot were performed to detect the expression levels of long non-coding RNA MALAT1, microRNA-126-5p (miR-126-5p) and high mobility group box-1 (HMGB1). Bioinformatics prediction and double luciferase assay were used to verify the targeting relationship between miR-126-5p and MALAT1, HMGB1. Reactive oxygen species (ROS), malondialdehyde (MDA) and ATP levels in culture medium were detected by corresponding kits. The results showed that Dex significantly reduced the levels of ROS and MDA, but increased the level of ATP in HL-7702 cells with HIRI. HIRI up-regulated the expression levels of MALAT1 and HMGB1, and down-regulated the level of miR-126-5p. Dex reversed these effects of HIRI. Furthermore, Dex inhibited HIRI-induced cellular apoptosis, whereas MALAT1 reversed the effect of Dex. This inhibitory effect of Dex could be restored by up-regulation of miR-126-5p. The results suggest that Dex protects hepatocytes from HIRI via regulating MALAT1/miR-126-5p/HMGB1 axis.
Dexmedetomidine/pharmacology*
;
HMGB1 Protein/genetics*
;
Humans
;
MicroRNAs/genetics*
;
RNA, Long Noncoding/genetics*
;
Reperfusion Injury/genetics*
2.Role and mechanism of non-coding RNA in the pathogenesis of acute kidney injury.
Peng WANG ; Miao-Miao ZHOU ; Jing NIE
Acta Physiologica Sinica 2022;74(1):39-46
Acute kidney injury (AKI) is a common clinical syndrome and an independent risk factor of chronic kidney disease and end-stage renal failure. At present, the treatments of AKI are still very limited and the morbidity and mortality of AKI are rising. Non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs and circular RNAs (circRNAs), are RNAs that are transcribed from the genome, but not translated into proteins. It has been widely reported that ncRNA is involved in AKI caused by ischemia reperfusion injury (IRI), drugs and sepsis through different molecular biological mechanisms, such as apoptosis and oxidative stress response. Therefore, ncRNAs are expected to become a new target for clinical prevention and treatment of AKI and a new biomarker for early warning of the occurrence and prognosis of AKI. Here, the role and mechanism of ncRNA in AKI and the research progress of ncRNA as biomarkers are reviewed.
Acute Kidney Injury/metabolism*
;
Humans
;
MicroRNAs/metabolism*
;
RNA, Circular
;
RNA, Long Noncoding/genetics*
;
RNA, Untranslated/genetics*
;
Reperfusion Injury/genetics*
3.Silencing LncRNA SNHG7 alleviates hypoxia/reoxygenation-induced cardiomyocyte damage by regulating the expression of miR-181b-5p.
Zhen LIU ; Weidong JIN ; Minglei HAN ; Jiajia CUI ; Yonglan HOU ; Guangcui XU
Chinese Journal of Medical Genetics 2021;38(8):812-817
OBJECTIVE:
To study the effect of silencing LncRNA SNHG7 on hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury and its targeted regulation on miR-181b-5p.
METHODS:
Rat cardiomyocytes H9c2 were cultured in vitro and randomly divided into control group, H/R group, H/R + si-NC group, H/R + si-SNHG7 group, H/R + si-SNHG7 + anti-miR-NC group and H/R + si-SNHG7 + anti-miR-181b-5p group. The content of lactate dehydrogenase (LDH), malondialedhyde (MDA) and the activity of superoxide dismutase (SOD) were detected. Flow cytometry was carried out to detect the rate of apoptosis. qRT-PCR was used to detect the expression of SNHG7 and miR-181b-5p. Dual luciferase report experiment was used to verify the targeting relationship between SNHG7 and miR-181b-5p. Western blotting was used to detect the expression of Bax and Bcl-2.
RESULTS:
Compared with the control group, the H/R group showed significantly increased SNHG7 expression in cardiomyocytes, reduced miR-181b-5p expression, higher levels of LDH and MDA, reduced activity of SOD, increased cell apoptosis rate, higher level of Bax protein, and reduced level of Bcl-2 protein (all P< 0.05). Compared with the H/R and H/R + si-NC groups, the H/R + si-SNHG7 group had significantly reduced level of LDH and MDA, increased activity of SOD, reduced apoptosis rate, reduced level of Bax protein, increased level of Bcl-2 protein (all P< 0.05). The dual luciferase report experiment confirmed that SNHG7 could target miR-181b-5p. Interference with the expression of miR-181b-5p could reduce the effect of silencing SNHG7 on H/R-induced cardiomyocyte oxidative stress and apoptosis.
CONCLUSION
Silencing SNHG7 may inhibit H/R-induced cardiomyocyte oxidative stress and apoptosis by up-regulating the expression of miR-181b-5p, thereby exerting a protective effect on cardiomyocytes.
Animals
;
Apoptosis
;
Hypoxia
;
MicroRNAs/genetics*
;
Myocardial Reperfusion Injury
;
Myocytes, Cardiac
;
RNA, Long Noncoding/genetics*
;
Rats
6.Down-regulation of miR-488 targeting to promote Jag1 expression inhibits hypoxia-reoxygenation myocardial H9c2 cell damage.
Yintao ZHAO ; Xiaoxin PEI ; Yuan LIU ; Yawei XU ; Meng PENG ; Haibo YANG
Chinese Journal of Medical Genetics 2021;38(12):1199-1203
OBJECTIVE:
To study the effect of down-regulating miR-488 targeting Jag1 on the injury of hypoxia-reoxygenation myocardial H9c2 cells.
METHODS:
A hypoxic-reoxygenated myocardial H9c2 cell injury model was constructed. miR-488 inhibitor was used to transfect the cells. CCK-8 method and flow cytometry were used to detect cell proliferation and apoptosis in each group. Lactate dehydrogenase (LDH), superoxide dismutase (SOD), malonaldehyde (MDA), catalase (CAT) levels were detected. Western blotting was used to detect the expression of Bcl-2 associated X Protein (Bax) and B cell lymphoma/lewkmia-2 (Bcl-2). Target genes of miR-488 were predicted, and a luciferase reporter system was used to verify the targeting relationship between the two. Myocardial H9c2 cells were co-transfected with miR-488 inhibitor and Jag1 siRNA, and treated with hypoxia and reoxygenation, cell proliferation, apoptosis, LDH, SOD, MDA, CAT levels, and Bax, Bcl-2 protein expression were detected.
RESULTS:
The expression of miR-488 in the hypoxia-reoxygenated myocardial H9c2 cells was increased, along with reduced cell proliferation, increased apoptosis, increased Bax protein expression, decreased Bcl-2 protein expression, increased MDA, decreased CAT and SOD, and increased LDH level in the supernatant of cell culture. When myocardial H9c2 cells were transfected with miR-488 inhibitor and treated with hypoxia and reoxygenation, the expression of miR-488 was decreased, along with increased cell proliferation, decreased apoptosis, decreased Bax protein expression, increased Bcl-2 protein expression, decreased MDA, increased CAT and SOD, and decreased LDH level in the supernatant of cell culture. Down-regulation of miR-488 could target and down-regulate Jag1 expression. And Jag1 siRNA could reverse the effect of miR-488 inhibitor on the proliferation, apoptosis, LDH, SOD, MDA, CAT levels and the expression of Bax and Bcl-2 of hypoxic-reoxygenated myocardial H9c2 cells.
CONCLUSION
Down-regulating miR-488 targeted Jag1 can attenuate hypoxia-reoxygenation induced myocardial H9c2 cell injury.
Apoptosis/genetics*
;
Down-Regulation
;
Humans
;
Hypoxia/genetics*
;
Jagged-1 Protein/genetics*
;
MicroRNAs/genetics*
;
Myocardial Reperfusion Injury
;
Myocytes, Cardiac
8.Gene expression profile of pulmonary tissues in different phases of lung ischemia-reperfusion injury in rats.
Jinsong, LI ; Jun, NIE ; Gang, CHEN ; Yongquan, GONG ; Ke, JIANG ; Guanghai, YANG ; Lei, LIU ; Jianjun, WANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2007;27(5):564-70
In order to provide us new clues to induce some endogenous protective molecular mechanisms, the changes in gene expression profile induced by ischemia-reperfusion in pulmonary tissues of rats were investigated and the dynamic mechanism of pulmonary ischemia-reperfusion injury was elucidated. Thirty male Wistar rats were randomly divided into 6 groups: 5 ischemia-reperfusion (I/R) groups (I/R 0-h, I/R 1-h, I/R 3-h, I/R 6-h, I/R 24-h) and control group (n=5 in each). An in situ ischemia-reperfusion lung injury rat model was established by occluded hilus of lung. The RatRef-12 Expression Beadchip (22 226 gene probes per array) was used to analyze the pattern of gene expression in all groups. The results showed that 648, 340, 711, 1279 and 641 genes were differentially expressed in I/R 0-, 1-, 3-, 6-and 24-h groups respectively. The differentially expressed genes were classified as following 7 functional categories: cytokine, adhesion molecule, growth factor and apoptosis-related factor, oxidation and antioxidation molecule, metabolic enzyme, ion channel and aquaporin, signal transduction molecule. It was suggested that gene chip technology was an effective and quick method for screening differentially expressed genes. Many differentially expressed genes with different functions interacted each other to result in pulmonary ischemia-reperfusion injury.
Gene Expression Profiling
;
Lung/*blood supply
;
Random Allocation
;
Rats, Wistar
;
Reperfusion Injury/*genetics
9.Heme oxygenase-1 is the candidate targeting for organ transplantation.
Le-ping LI ; Li ZHANG ; Li-pan PENG ; Li CHENG
Chinese Medical Journal 2010;123(15):2128-2134
OBJECTIVETo review the role of heme oxyenase-1 in organ transplantation and explore the potential applications targeted on overexpression of heme oxyenase-1 gene.
DATA SOURCESThe data cited in this review were mainly obtained from the articles listed in Medline and PubMed, published from January 1996 to December 2008. The search terms were "heme oxygenase-1" and "transplantation".
STUDY SELECTIONArticles regarding the role of heme oxyenase-1 in organ transplantation and its protective role in transplants were selected. Protective effects of heme oxygenase-1 overexpression using a gene transfer approach against ischaemic reperfusion injury during transplantation were widely explored.
RESULTSLocal heme oxygenase-1 overexpression in the graft ameliorates the ischaemic reperfusion injury. This is due to removal of heme, a potent prooxidant and proinflammatory agent, but also because of generation of biologically active products.
CONCLUSIONSOverexpressive heme oxygenase-1 activity is associated with tissue protection in the setting of graft, ischaemic reperfusion injury. Gene therapy is attractive to us; but a long way from general application. In terms of heme oxygenase-1, the gene promoters are polymorphic. Although individualization is an important principle during clinical application, it is difficult to put into practice.
Animals ; Heme Oxygenase-1 ; genetics ; metabolism ; Humans ; Organ Transplantation ; methods ; Reperfusion Injury ; therapy
10.miR-133b inhibits myocardial ischemia-reperfusion-induced cardiomyocyte apoptosis and accumulation of reactive oxygen species in rats by targeting YES1.
Xing PENG ; Ling LIN ; Xiangqun ZHOU ; Daying YANG ; Yang CAO ; Taoyuan YIN ; Yuanyuan LIU
Journal of Southern Medical University 2020;40(10):1390-1398
OBJECTIVE:
To investigate the effect of miR-133b on cardiomyocyte apoptosis induced by myocardial ischemia-reperfusion (I/R) and explore the mechanism.
METHODS:
Thirty-six adult SD rats were randomized into sham-operated group, I/R group, AdmiR-NC group and AdmiR-133b group, and rat models of myocardial I/R were established in the latter 3 groups with myocardial injections of saline or recombinant adenoviruses in the left ventricle. The expression of MiR-133b was detected using RT-qPCR, and cardiac function of the rats was determined using FDP 1 HRV and BRS analysis system. Serum CK-MB and cTnI levels were determined by ELISA, myocardial injury was evaluated with HE staining, cardiomocyte apoptosis was detected by flow cytometry, and ROS content was determined using a DCFH-DA probe. In the in vitro experiment, H9C2 myocardial cells with hypoxia/reoxygenation (H/R) treatment were transfected with Mir-NC or MiR-133b mimic, and the cellular expression of MiR-133b, cell apoptosis, and ROS content were determined. Dual luciferase reporter assay was performed to verify the targeting relationship between miR-133b and YES1. The effects of pc-YES1 or miR-133b mimic transfection on YES1 expression, apoptosis, and ROS content in H9C2 cells were evaluated.
RESULTS:
Compared with those in I/R group, miR-133b expression was obviously up-regulated, LVEDP, cTnI and CK-MB levels were significantly decreased, and LVSP, +dp/dt, -dp/dt, HR and CF levels were increased in admiR-133b group (
CONCLUSIONS
miR-133b can inhibit I/R-induced myocardial cell apoptosis and ROS accumulation by targeting YES1 to reduce myocardial I/R injury in rats.
Animals
;
Apoptosis
;
MicroRNAs/genetics*
;
Myocardial Reperfusion Injury
;
Myocytes, Cardiac
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species