1.Gene Expression of the Micrococcus luteus Fibrinolytic Enzyme (MLFE) in Bacillus subtilis WB600
Lu XIAO ; Renhuai ZHANG ; Yizheng ZHANG
Microbiology 2008;0(08):-
MLFE (Micrococcus luteus fibrinolytic enzyme) is a fibrinolytic enzyme produced by Micrococcus luteus ML909 strain. The promoter and signal peptide-coding sequence of ?-amylase gene from Bacillus amyloliquefaciens DC-4 was cloned and fused to the sequence coding for mature peptide of MLFE (Gen-Bank: EU232121), forming the fusion gene called amymlfe. This hybrid gene was inserted into the Escherichia coli-Bacillus subtilis shuttle plasmid vector pSUGV4 and expression plasmid pSU-AmyMLFE was constructed. After transformation with B. subtilis WB600, transformant WB600/pSU-AmyMLFE was obtained and produced clear hydrolyzed zones on fibrin plates. The fibrinolytic activity in supernatants of WB600/pSU-AmyMLFE fermented for 24 hours was tested and found to be 238 UKU/mL. The results of SDS-PAGE analysis showed that there was indeed recombinant protein in supernatants. The Western blotting showed that the molecular weight of the expressed protein was the same as expected. These results indicate that the gene, amymlfe, is successfully expressed in B. subtilis WB600.
2.Comparing the effectiveness of lithium disilicate glass ceramic onlays and full crowns in the restoration of cracked teeth that have undergone root canal therapy
ZHANG Hao ; TIAN Yuan ; LI Zhuangzhuang ; ZHANG Min ; ZHOU Haolin ; LIU Jianguo
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(8):639-649
Objective:
This study compares the effects of lithium disilicate glass ceramic onlays and full crowns in restoring cracked teeth that have undergone root canal therapy, providing a reference for the restoration method of cracked teeth that have undergone root canal therapy.
Methods:
This study was approved by the hospital’s medical ethics committee, and all patients signed the informed consent form. Patients with cracked teeth who underwent root canal treatment in our hospital from January 2022 to January 2023 were enrolled in this study. According to the inclusion and exclusion criteria, 60 patients were screened and enrolled, with a total of 60 affected teeth. The patients were divided into the onlay group and full crown group at a ratio of 2:3 using the random number table method. Lithium disilicate glass ceramic onlays were used to restore the affected teeth in the onlay group (24 cases), and lithium disilicate glass ceramic full crowns were used to restore the affected teeth in the full crown group (36 cases). At 3, 6, and 12 months after the repair, the restoration effect was evaluated and compared with the modified USPH Standard (the aesthetic, functional, and biological aspects of restorations). According to the biological definition of survival, survival analysis was conducted on the affected teeth in both groups.
Results:
At 3, 6, and 12 months after the repair, 85% of cases in the onlay group achieved grade A, while 80% of cases in the full crown group achieved grade A. There was no statistically significant difference in the restoration effects between the onlay group and the full crown group (P > 0.05). The 12-month survival rate of cracked teeth in the onlay group reached 95.65%, and the 12-month survival rate of cracked teeth in the full crown group reached 94.12%. There was no statistically significant difference in the retention of the affected teeth (P > 0.05). There was no significant effect of age, gender, tooth position, dentition, direction of cracks, the number of marginal ridges associated with cracks, or the type of restoration on the survival status of cracked teeth. (P > 0.05).
Conclusion
For cracked teeth that have undergone root canal therapy, the short-term effect of lithium disilicate glass ceramic onlays is comparable to that of full crowns, and both have good short-term effects. Onlays are less invasive and are expected to become an alternative restoration method to full crowns.
3.Correlation between rhizosphere environment and content of medicinal components of Arnebia euchroma.
Ji-Zhao ZHANG ; Yuan-Jin QIU ; Ya-Qin ZHAO ; Yu YE ; Guo-Ping WANG ; Jun ZHU ; Xiao-Jin LI ; Cong-Zhao FAN
China Journal of Chinese Materia Medica 2023;48(22):6030-6038
This study aimed to explore the correlation between rhizosphere soil microorganisms of wild Arnebia euchroma and the content of medicinal components to provide guidance for the selection of the ecological planting base. The total DNA of rhizosphere soil microorganisms of wild A. euchroma was extracted, and the microbial community structure of rhizosphere soil microorganisms was analyzed by IlluminaMiseq high-throughput sequencing technology. The content of total hydroxynaphthoquinone pigment and β,β'-dimethylacrylalkannin in medicinal materials was determined by high-performance liquid chromatography(HPLC). The physicochemical pro-perties of rhizosphere soil of wild A. euchroma in main producing areas were determined, and the correlation of soil microbial abundance with index component content and soil physicochemical properties was analyzed by SPSS software. The results showed that the species composition of rhizosphere fungi and bacteria in A. euchroma from different habitats was similar at the phylum and genus levels, but their relative abundance, richness index(Chao1), and community diversity(Simpson) index were different. Correlation analysis showed that the content of available phosphorus in soil was positively correlated with the content of total hydroxynaphthoquinone pigment and β,β'-dimethylacrylalkannin, and the abundance of five fungal genera such as Solicoccozyma and six bacterial genera such as Pseudo-nocardia and Bradyrhizobium was positively correlated with the content of medicinal components in medicinal materials. The abundance of Bradyrhizobium was significantly positively correlated with the content of β,β'-dimethylacrylalkanin. The abundance of fungi such as Archaeorhizomyces was significantly positively correlated with the content of available phosphorus in rhizosphere soil, and Bradyrhizobium was significantly negatively correlated with soil pH. Therefore, the abundance of fungi and bacteria in the rhizosphere of A. euchroma has a certain correlation with the medicinal components and the physicochemical properties of the rhizosphere soil, which can provide a scientific basis for the selection of ecological planting bases in the later stage.
Rhizosphere
;
Soil Microbiology
;
Bacteria/genetics*
;
Phosphorus
;
Soil
;
Boraginaceae