2.Genetic characterization of G II.12 norovirus in Beijing from 2008 to 2009.
Ke-Na CHEN ; Geng TIAN ; Miao JIN ; Hui-Ying LI ; Quan-Rui LI ; Li-Hong KANG ; Cui-Hong ZHANG ; Xiang-Yu KONG ; Ji-In GAO ; Zhao-Jun DUAN
Chinese Journal of Experimental and Clinical Virology 2013;27(3):184-186
OBJECTIVETo reveal the genetic characteristics of GII.12 Norovirus strains isolating from stool samples of adults with diarrhea in Beijing during 2008-2009.
METHODSRdRp, ORF2, ORF3 and ORF1/ORF2 overlap region were respectively amplified by primers using RT-PCR. The products were purified, cloned, sequenced and then aligned, phylogenetic and recombinant analyzed by softwares of DNAStar, MEGA and SimPlot.
RESULTSAccording to the phylogenetic analysis, 11 strains belonged to G II.g in the RdRp region,while GII.12 in the ORF2 and ORF3. SimPlot analysis further confirmed the 11 strains were recombinant strains ( G II.g [RdRp]/G II.12 [capsid]).
CONCLUSIONG II.12 Norovirus prevailing in Beijing and other regions of the world belonged to the same strain, and we identified the genetic characteristics of G II.12 Norovirus in Beijing.
China ; Norovirus ; classification ; genetics ; Phylogeny ; Recombination, Genetic ; Time Factors
3.Genetic evidence for recombination and mutation in the emergence of human enterovirus 71.
Ai-Ping LIU ; Hui TAN ; Qun XIE ; Bai-Tang CHEN ; Xiao-Feng LIU ; Yong ZHANG
Chinese Journal of Virology 2014;30(5):572-578
We wished to understand the genetic recombination and phylogenetic characteristics of human en- terovirus A71 (EV-A71) and to explore its potential virulence-related sites. Full-length genomes of three EV-A71 strains isolated from patients in Chenzhou City (China) were sequenced and analyzed. Possible re- combination events and crossover sites were analyzed with Recombination Detection Program v4. 1. 6 by comparison with the complete genome sequences of 231 strains of EV-A71. Similarly, plot and bootscanning analyses were undertaken with SimPlot v3. 5. 1. Phylogenetic trees based on the sequences of VP1 regions were constructed with MEGA v5. 2 using the Kimura two-parameter model and neighbor-joining method. Results suggested that recombination events were detected among the three EV-A71 isolates from Chenzhou City. The common main parent sequence was from JF799986 isolated from samples in Guang- zhou City (China) in 2009, and the minor parent sequence was TW/70516/08. Intertypic recombination e- vents were found in the C4b strain (strain SHZH98 isolated in 1998) and C4a strain (Fuyang strain isola- ted in 2008) with the prototype strains of CVA4 and CVA14 in the 3D region. The chi-square test was used to screen-out potential virulence-related sites with nucleotide substitutions of different types of hand, foot, and mouth disease (HFMD) cases using SPSS v19.0. Results suggested that there were no significant nucleotide substitutions between death cases and severe-HFMD cases. Eighteen significant nucleotide substitutions were found between death/severe-HFMD cases and mild-HFMD cases, and all these 18 substitutions were distributed only in P2 and P3 regions. Intertypic recombination among the predominant circulating EV-A71 strains in the Chinese mainland and other EV-A strains probably dates before 1998, and intratypic recombination might have occurred frequently in the HFMD outbreak from 2008 to 2012. Substitutions in the non-capsid region may be correlated with the changes in virulence of EV-A71. These data suggest that researchers should pay more attention to the relationships between substitutions in the noncapsid region and the virulence of the virus.
Enterovirus A, Human
;
genetics
;
pathogenicity
;
Mutation
;
Phylogeny
;
Recombination, Genetic
;
Virulence
4.Application of high efficiency promoters in microbial production of 4-hydroxybutyric acid.
Qin ZHOU ; Jinchun CHEN ; Guoqiang CHEN
Chinese Journal of Biotechnology 2012;28(1):48-55
4-Hydroxybutyric acid (4HB) is a psychotropic drug used for polymer synthesis such as poly (4-hydroxybutyric acid) (P4HB) and poly (3-hydroxybutyric acid-co-4-hydroxybutyric acid) (P3HB-co-4HB). 1,4-butanediol (BD) can be converted to 4-hydroxybutyric acid by alcohol dehydrogenase (DhaT) and aldehyde dehydrogenase (AldD). In this study, high efficiency promoters including T7 promoter and P(Re) promoter were cloned to increase expression of dhaT and aldD, and thus accelerate the conversion from BD to 4HB. A. hydrophila 4AK4 (pZQ01), the recombinant strain under the control of T7 promoter, produced 6.00 g/L 4HB from 10 g/L BD with the productivity increased by 43.20%. While A. hydrophila 4AK4 (pZQ04), the strain under the control of T7 promoter, produced 4.87 g/L 4HB from 10 g/L BD, and the productivity was increased by 16.23%. Thus, the gene expression was increased by T7 and P(Re) promoters, leading to an accelerated biosynthesis of 4HB.
Aeromonas hydrophila
;
genetics
;
metabolism
;
Genetic Engineering
;
Hydroxybutyrates
;
metabolism
;
Promoter Regions, Genetic
;
genetics
;
Recombination, Genetic
5.Using green fluorescent protein as a reporter to monitor elimination of selectable marker genes from transgenic plants.
Hong-Ge JIA ; Ling-Fei LÜ ; Yong-Qi PANG ; Xiao-Ying CHEN ; Rong-Xiang FANG
Chinese Journal of Biotechnology 2004;20(1):10-15
In genetic modification of plants, once the transformants are obtained, selection markers are no longer required in mature plants. At present, the Cre/lox site-specific recombination system is most widely used to eliminate the selectable marker genes from the transgenic plants. In this study, attempt was made to favour the selection of marker-free plants in the re-transformation method. Green fluorescent protein (GFP) can be directly visualized in living cells, tissues or organisms under UV illumination. This advantage of GFP is exploited in the development of a practical approach in which GFP is used as a visual marker to monitor the removal of the selectable marker gene from transgenic plants. For that purpose, the pGNG binary vector was constructed, in which the GFP gene (gfp) was linked to the expression cassette Nos P-nptII-NosT and the two units were cloned between two directly-orientated lox sites. The CaMV 35S promoter was placed before the first lox site and used to drive GFP expression. The beta-glucuronidase gene (gus) of Escherichia coli was cloned behind the second lox site without a promoter, thus would not be expressed in this position. Tobacco plants were first transformed with pGNG and selected on kanamycin (Kan)-containing media. Regenerated transgenic shoots were readily singled out by GFP fluorescence. The GFP-expressing plants were then re-transformed with pCambia1300-Cre containing hygromycin phosphotransferase gene (hpt) as a selectable marker gene. The Cre-mediated recombination resulted in the elimination of lox-flanked genes, herein gfp and nptII, from the plant genome and brought the GUS gene next to the 35S promoter. Our data demonstrated that transgenic plants free of nptII were easily selected by monitoring the loss of green fluorescence, and at the same time, GUS (here as a target protein) was expressed in the nptII-free plants. Finally, hpt and cre were removed from the progenies of the nptII-free plants by gene segregation.
Genetic Markers
;
Green Fluorescent Proteins
;
genetics
;
Plants, Genetically Modified
;
genetics
;
Plasmids
;
Recombination, Genetic
;
Tobacco
;
genetics
6.Application of the self excision Cre/lox system in plants.
Xiuming LIU ; Xinxin MENG ; Haiyan LI ; Jing YANG ; Hongqi FU ; Xiaokun LI
Chinese Journal of Biotechnology 2009;25(10):1459-1463
Marker-free plants have been public concern. Co-transformation and site-specific recombination system are more important methods in self-gene excision. We reviewed the Cre/lox site-specific system and its applications in plants, also, we discussed perspectives of the system in according with our experience.
DNA, Plant
;
genetics
;
Genes, Plant
;
genetics
;
Genetic Markers
;
Integrases
;
Plants, Genetically Modified
;
genetics
;
Recombination, Genetic
7.Construction and antigenic evaluation of a recombinant MVA virus-like particle expressing HBV C gene.
Xiang-ling LUAN ; Wei KONG ; Su-jun LIU ; Li LEI ; Yan HU ; Jun HOU ; Hong-hui SHEN ; Yi-chen WU ; Shao-li YOU ; Pan-yong MAO ; Shao-jie XIN
Journal of Southern Medical University 2008;28(2):252-254
OBJECTIVETo construct the virus-like parcel expressing hepatitis B virus (HBV) C gene and identify its immunogenicity.
METHODSHBV C gene was cloned into the shuttle vector pSC11, and the resulted plasmid pSC11-C was transfected into modified vaccinia virus Ankara (MVA).
RESULTSpSC11-C was correctly constructed as verified by sequence analysis and PCR, and the recombinant virus-like parcel possessed good immunogenicity.
CONCLUSIONThe MVA-C expressing HBV C gene has been successfully constructed to provide important basis for gene therapy research of chronic HBV infection.
Genes, Viral ; Genetic Vectors ; Hepatitis B Core Antigens ; genetics ; Recombination, Genetic ; Vaccinia virus ; genetics
8.Markerless DNA deletion based on Red recombination and in vivo I-Sec I endonuclease cleavage in Escherichia coli chromosome.
Meiqin ZHU ; Jian YU ; Changlin ZHOU ; Hongqing FANG
Chinese Journal of Biotechnology 2016;32(1):114-126
Red-based recombineering has been widely used in Escherichia coli genome modification through electroporating PCR fragments into electrocompetent cells to replace target sequences. Some mutations in the PCR fragments may be brought into the homologous regions near the target. To solve this problem in markeless gene deletion we developed a novel method characterized with two-step recombination and a donor plasmid. First, generated by PCR a linear DNA cassette which comprises a I-Sec I site-containing marker gene and homologous arms was electroporated into cells for marker-substitution deletion of the target sequence. Second, after a donor plasmid carrying the I-Sec I site-containing fusion homologous arm was chemically transformed into the marker-containing cells, the fusion arms and the marker was simultaneously cleaved by I-Sec I endonuclease and the marker-free deletion was stimulated by double-strand break-mediated intermolecular recombination. Eleven nonessential regions in E. coli DH1 genome were sequentially deleted by our method, resulting in a 10.59% reduced genome size. These precise deletions were also verified by PCR sequencing and genome resequencing. Though no change in the growth rate on the minimal medium, we found the genome-reduced strains have some alteration in the acid resistance and for the synthesis of lycopene.
Chromosomes, Bacterial
;
genetics
;
DNA
;
Endonucleases
;
metabolism
;
Escherichia coli
;
genetics
;
Genetic Engineering
;
methods
;
Recombination, Genetic
;
Sequence Deletion
9.Synergistic effect of amorpha-4,11-diene synthase gene in engineered Saccharomyces cerevisiae.
Jianqiang KONG ; Xiaohui ZHI ; Wei WANG ; Kedi CHENG ; Ping ZHU
Chinese Journal of Biotechnology 2011;27(2):196-202
To construct an engineered Saccharomyces cerevisiae producing high titres of amorpha-4,11-diene, we investigated the possible synergistic effect of different vectors containing amorpha-4,11-diene synthase(ADS) gene within one yeast cell. We constructed the ADS recombinant plasmid pGADADS. This plasmid and another ADS recombinant plasmid pYeDP60/G/ADS were alone, or co-transformed into yeast Saccharomyces cerevisiae W303-1B and WK1, respectively, resulting in the following engineered yeasts, W303B[pGADADS], W303B[pYGADS], W303B[pYGADS+pGADADS], WK1[pGADADS], WK1[pYGADS] and WK1[pYGADS+pGADADS]. All of the six strains were cultured for GC-MS analysis of amorpha-4,11-diene. The results showed that all of the engineered yeasts could produce amorpha-4,11-diene. The yield of the product was improved with increasing ADS gene copies while no deleterious effect on the strain growth was found. Moreover, the product yield of the engineered yeast co-transformed with multiple plasmids was much higher than the total yield of the different engineered yeasts with only one plasmid, respectively. In conclusion, there was a distinct synergistic effect between different recombinant ADS plasmids within one cell. Our results facilitate the construction of the engineered yeast with high yield of amorpha-4,11-diene, the precursor of artemisinin.
Alkyl and Aryl Transferases
;
biosynthesis
;
genetics
;
Artemisinins
;
chemistry
;
metabolism
;
Genetic Engineering
;
methods
;
Genetic Vectors
;
genetics
;
Recombination, Genetic
;
Saccharomyces cerevisiae
;
genetics
;
metabolism
10.Progress in the pathway engineering of ethanol fermentation from xylose utilising recombinant Saccharomyces cerevisiae.
Yu SHEN ; Ying WANG ; Xiao-Ming BAO ; Yin-Bo QU
Chinese Journal of Biotechnology 2003;19(5):636-640
Pathway engineering was the third generation of gene engineering. Its main goals were to change metabolic flux and open a new metabolic pathway in organism. Application of recombinant DNA methods to restructure metabolic networks can improve production of metabolite and protein products by altering pathway distributions and rates. Ethanol is the most advanced liquid fuel because it is environmentally friendly. Enhancing fuel ethanol production will require developing lower-cost feedstock, and only lignocellulosic feedstock is available in sufficient quantities to substitute for corn starch. Xylose is the major pentose found in lignocellulosic materials and after glucose the most abundant sugar available in nature. Recently a lot of attentions have been focused on designing metabolic pathway of Saccharomyces cerevisiae in order to expand the substrate of ethanol fermentation, because it is a traditional ethanol producing strain and has wonderful properties for ethanol industry. However, it can not utilize xylose but convert the isomer, xylulose. Many attempts are based on introducing the genes in the pathway of xylose metabolism. The further research includes overexpressing the key enzyme or decreasing the unimportant flux. The sugars in lignocellulose hydrolyzates, therefore, could be efficiently utilized. Here, we describe the ethanol pathway engineering progress in ethanol fermentation from xylose with recombinant Saccharomyces cerevisiae.
Biotechnology
;
methods
;
Ethanol
;
metabolism
;
Fermentation
;
genetics
;
physiology
;
Recombination, Genetic
;
genetics
;
Saccharomyces cerevisiae
;
genetics
;
metabolism
;
Xylose
;
metabolism