1.The Application Under Digital Radiography-Guided Selection of Bone Biopsy(A Report of 41 Cases)
Wei LONG ; Qingfa HE ; Mu LIU ; Song TAN ; Xiaoling XIA
Journal of Practical Radiology 2001;0(10):-
Objective To discuss the method, safety and selection of instrument in bone biopsy under digital radiography-guided. Methods Bone biopsy in 41 patients with bone lesion were performed under digital radiography-guided. Using the MDTECH super-core Ⅱ biopsy instrument, the MDTECH biopsy needle and osseous drill.Results The successful rate was 100% and the posilive rate was90.3%. None of them had severe complications. Conclusion Bone biopsy is a safe , accurate and effective method under digital radiography-guided.
2.The E protein is a multifunctional membrane protein of SARS-CoV.
Qingfa WU ; Yilin ZHANG ; Hong LÜ ; Jing WANG ; Ximiao HE ; Yong LIU ; Chen YE ; Wei LIN ; Jianfei HU ; Jia JI ; Jing XU ; Jie YE ; Yongwu HU ; Wenjun CHEN ; Songgang LI ; Jun WANG ; Jian WANG ; Shengli BI ; Huanming YANG
Genomics, Proteomics & Bioinformatics 2003;1(2):131-144
The E (envelope) protein is the smallest structural protein in all coronaviruses and is the only viral structural protein in which no variation has been detected. We conducted genome sequencing and phylogenetic analyses of SARS-CoV. Based on genome sequencing, we predicted the E protein is a transmembrane (TM) protein characterized by a TM region with strong hydrophobicity and alpha-helix conformation. We identified a segment (NH2-_L-Cys-A-Y-Cys-Cys-N_-COOH) in the carboxyl-terminal region of the E protein that appears to form three disulfide bonds with another segment of corresponding cysteines in the carboxyl-terminus of the S (spike) protein. These bonds point to a possible structural association between the E and S proteins. Our phylogenetic analyses of the E protein sequences in all published coronaviruses place SARS-CoV in an independent group in Coronaviridae and suggest a non-human animal origin.
Amino Acid Sequence
;
Base Sequence
;
Cluster Analysis
;
Codon
;
genetics
;
Gene Components
;
Genome, Viral
;
Membrane Glycoproteins
;
metabolism
;
Membrane Proteins
;
genetics
;
metabolism
;
Molecular Sequence Data
;
Phylogeny
;
Protein Conformation
;
SARS Virus
;
genetics
;
Sequence Alignment
;
Sequence Analysis, DNA
;
Sequence Homology
;
Spike Glycoprotein, Coronavirus
;
Viral Envelope Proteins
;
genetics
;
metabolism
3.A genome sequence of novel SARS-CoV isolates: the genotype, GD-Ins29, leads to a hypothesis of viral transmission in South China.
E'de QIN ; Xionglei HE ; Wei TIAN ; Yong LIU ; Wei LI ; Jie WEN ; Jingqiang WANG ; Baochang FAN ; Qingfa WU ; Guohui CHANG ; Wuchun CAO ; Zuyuan XU ; Ruifu YANG ; Jing WANG ; Man YU ; Yan LI ; Jing XU ; Bingyin SI ; Yongwu HU ; Wenming PENG ; Lin TANG ; Tao JIANG ; Jianping SHI ; Jia JI ; Yu ZHANG ; Jia YE ; Cui'e WANG ; Yujun HAN ; Jun ZHOU ; Yajun DENG ; Xiaoyu LI ; Jianfei HU ; Caiping WANG ; Chunxia YAN ; Qingrun ZHANG ; Jingyue BAO ; Guoqing LI ; Weijun CHEN ; Lin FANG ; Changfeng LI ; Meng LEI ; Dawei LI ; Wei TONG ; Xiangjun TIAN ; Jin WANG ; Bo ZHANG ; Haiqing ZHANG ; Yilin ZHANG ; Hui ZHAO ; Xiaowei ZHANG ; Shuangli LI ; Xiaojie CHENG ; Xiuqing ZHANG ; Bin LIU ; Changqing ZENG ; Songgang LI ; Xuehai TAN ; Siqi LIU ; Wei DONG ; Jun WANG ; Gane Ka-Shu WONG ; Jun YU ; Jian WANG ; Qingyu ZHU ; Huanming YANG
Genomics, Proteomics & Bioinformatics 2003;1(2):101-107
We report a complete genomic sequence of rare isolates (minor genotype) of the SARS-CoV from SARS patients in Guangdong, China, where the first few cases emerged. The most striking discovery from the isolate is an extra 29-nucleotide sequence located at the nucleotide positions between 27,863 and 27,864 (referred to the complete sequence of BJ01) within an overlapped region composed of BGI-PUP5 (BGI-postulated uncharacterized protein 5) and BGI-PUP6 upstream of the N (nucleocapsid) protein. The discovery of this minor genotype, GD-Ins29, suggests a significant genetic event and differentiates it from the previously reported genotype, the dominant form among all sequenced SARS-CoV isolates. A 17-nt segment of this extra sequence is identical to a segment of the same size in two human mRNA sequences that may interfere with viral replication and transcription in the cytosol of the infected cells. It provides a new avenue for the exploration of the virus-host interaction in viral evolution, host pathogenesis, and vaccine development.
Base Sequence
;
China
;
Cluster Analysis
;
Gene Components
;
Genetic Variation
;
Genome, Viral
;
Genotype
;
Molecular Sequence Data
;
Phylogeny
;
Reverse Transcriptase Polymerase Chain Reaction
;
SARS Virus
;
genetics
;
Sequence Analysis, DNA
;
Severe Acute Respiratory Syndrome
;
genetics