1.Establishment and Application of Prevalence Baseline for Hospital Infection
Longmin DU ; Qinchuan DU ; Yilei HOU ; Xiuxia YANG
Chinese Journal of Nosocomiology 2006;0(07):-
OBJECTIVE To establish the mechanism for monitoring,standardizing and alarming of relative risk factors to reflect the tendency of hospital infection.METHODS Data of hospital infection during six years were surveyed and analyzed completely.The prevalence baseline of hospital infection was chosen as the value to assess the control rate of hospital infection.The alarm value was set on the baseline.RESULTS The hospital infection revalence baseline and alarm value were used to assess the quality of infection control in whole hospital and each department objectively and accurately.These values could be also used to assess the effect of control of hospital infection among departments.They also could be used to survey the tendency of hospital infection and determine prevalence and outbreak of hospital infection.CONCLUSIONS Prevalence baseline and alarm value for hospital infection are valuable for preventing hospital infection and its outbreak.
2.Differential transcriptomic landscapes of multiple organs from SARS-CoV-2 early infected rhesus macaques.
Chun-Chun GAO ; Man LI ; Wei DENG ; Chun-Hui MA ; Yu-Sheng CHEN ; Yong-Qiao SUN ; Tingfu DU ; Qian-Lan LIU ; Wen-Jie LI ; Bing ZHANG ; Lihong SUN ; Si-Meng LIU ; Fengli LI ; Feifei QI ; Yajin QU ; Xinyang GE ; Jiangning LIU ; Peng WANG ; Yamei NIU ; Zhiyong LIANG ; Yong-Liang ZHAO ; Bo HUANG ; Xiao-Zhong PENG ; Ying YANG ; Chuan QIN ; Wei-Min TONG ; Yun-Gui YANG
Protein & Cell 2022;13(12):920-939
SARS-CoV-2 infection causes complicated clinical manifestations with variable multi-organ injuries, however, the underlying mechanism, in particular immune responses in different organs, remains elusive. In this study, comprehensive transcriptomic alterations of 14 tissues from rhesus macaque infected with SARS-CoV-2 were analyzed. Compared to normal controls, SARS-CoV-2 infection resulted in dysregulation of genes involving diverse functions in various examined tissues/organs, with drastic transcriptomic changes in cerebral cortex and right ventricle. Intriguingly, cerebral cortex exhibited a hyperinflammatory state evidenced by significant upregulation of inflammation response-related genes. Meanwhile, expressions of coagulation, angiogenesis and fibrosis factors were also up-regulated in cerebral cortex. Based on our findings, neuropilin 1 (NRP1), a receptor of SARS-CoV-2, was significantly elevated in cerebral cortex post infection, accompanied by active immune response releasing inflammatory factors and signal transmission among tissues, which enhanced infection of the central nervous system (CNS) in a positive feedback way, leading to viral encephalitis. Overall, our study depicts a multi-tissue/organ transcriptomic landscapes of rhesus macaque with early infection of SARS-CoV-2, and provides important insights into the mechanistic basis for COVID-19-associated clinical complications.
Animals
;
COVID-19/genetics*
;
Macaca mulatta
;
SARS-CoV-2/genetics*
;
Transcriptome