1.Taurine inhibits M2 polarization of macrophages by promoting mitophagy.
Chengying CHEN ; Chunhua LAN ; Jianglang YUAN ; Xingxing KONG ; Li LAN ; Xinhang WANG ; Shengboxiaoji CHANG ; Cailing LU ; Xiyi LI ; Shen TANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(6):488-493
Objective To investigate the molecular mechanism of taurine regulating the polarization of M2 macrophages by mitophagy. Methods THP-1 cells were divided into four groups: M0 group (THP-1 cells were treated by 100 nmol/L phorbol myristate ester for 48 hours to polarize into M0), M2 group (THP-1 cells were induced to polarize into M2 macrophages by 20 ng/mL interferon-4 (IL-4) for 48 hours), M2 combined with taurine groups (added with 40 or 80 mmol/L taurine on the basis of M2 macrophages). The mRNA expression of mannose receptor C type 1(MRC-1), C-C motif chemokine ligand 22(CCL22) and dendritic cell-specific ICAM-3 grabbing non-integrin (CD209) in M2 macrophages were detected by quantitative real-time PCR. Mitochondrial and lysosome probes were used to detect the number of mitochondria and lysosomes by multifunction microplate reader and confocal laser scanning microscope. The level of mitochondrial membrane potential (MMP) was detected by JC-1 MMP assay kit. The expression of mitophagy-related proteins PTEN-induced putative kinase 1 (PINK1) and microtubule-associated protein 1 light chain 3 (LC3) were detected by Western blot analysis. Results Compared with M0 group, the expression of MRC-1, CCL22, CD209 and PINK1, the number of mitochondria and the level of MMP in M2 group were significantly increased, whereas the number of lysosomes and LC3II/LC3I ratio were decreased. Compared with M2 group, the expressions of MRC-1, CCL22 and CD209, the number of mitochondria and the level of MMP in M2 combined with taurine group dropped significantly while the number of lysosomes was found increased, and the protein expression of PINK1 and LC3II/LC3I ratio were also increased. Conclusions The polarization of M2 macrophages is regulated by taurine to prevent excessive polarization via reducing the level of MMP, improving the level of mitophagy, reducing the number of mitochondria, and inhibiting the mRNA expression of polarization markers in M2 macrophages.
Mitophagy
;
Taurine
;
Macrophages/metabolism*
;
Protein Kinases/metabolism*
;
RNA, Messenger
2.Progress in study on the final executor of necroptosis MLKL and its inhibitors.
Journal of Central South University(Medical Sciences) 2023;48(2):242-251
Necroptosis is one of the regulated cell death, which involves receptor interacting protein kinase (RIPK) 1/RIPK3/mixed lineage kinase domain like protein (MLKL) signaling pathway. Among them, MLKL is the final execution of necroptosis. The formation of RIPK1/RIPK3/MLKL necrosome induces the phosphorylated MLKL, and the activated MLKL penetrates into the membrane bilayer to form membrane pores, which damages the integrity of the membrane and leads to cell death. In addition to participating in necroptosis, MLKL is also closely related to other cell death, such as NETosis, pyroptosis, and autophagy. Therefore, MLKL is involved in the pathological processes of various diseases related to abnormal cell death pathways (such as cardiovascular diseases, neurodegenerative diseases and cancer), and may be a therapeutic target of multiple diseases. Understanding the role of MLKL in different cell death can lay a foundation for seeking various MLKL-related disease targets, and also guide the development and application of MLKL inhibitors.
Protein Kinases/metabolism*
;
Necroptosis/physiology*
;
Receptor-Interacting Protein Serine-Threonine Kinases
;
Signal Transduction
;
Pyroptosis
;
Apoptosis
3.Autophagy pathways and key drug targets in Parkinson's disease.
Liang OUYANG ; Lan ZHANG ; Bo LIU
Acta Pharmaceutica Sinica 2016;51(1):9-17
Parkinson's disease (PD) is a common neurodegenerative disorder associated with aging. Great progresses have been made toward understanding the pathogenesis over the past decades. It seems that both genetic factors and environmental factors contribute to PD, while the precise pathogenesis still remains unknown. Recently, increasing evidence has suggested that autophagy dysregulation is closely related to PD. Dysregulation of the autophagic pathways has been observed in the brains of PD patients or in animal models of PD, and a number of PD-associated proteins, such as a-synuclein, Parkin and PINK1, were found to involve in autophagy, suggesting a link between autophagy and pathogenesis of PD. In this review, we summarized the role of PD-associated proteins in autophagy pathways. In addition, we described the efficacy of autophagy-modulating compounds in PD models and discussed promising strategies for PD therapy.
Animals
;
Autophagy
;
Humans
;
Parkinson Disease
;
physiopathology
;
Protein Kinases
;
metabolism
;
Ubiquitin-Protein Ligases
;
metabolism
;
alpha-Synuclein
;
metabolism
4.AMPK activators: mechanisms of action and physiological activities.
Joungmok KIM ; Goowon YANG ; Yeji KIM ; Jin KIM ; Joohun HA
Experimental & Molecular Medicine 2016;48(4):e224-
AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis, which coordinates metabolic pathways and thus balances nutrient supply with energy demand. Because of the favorable physiological outcomes of AMPK activation on metabolism, AMPK has been considered to be an important therapeutic target for controlling human diseases including metabolic syndrome and cancer. Thus, activators of AMPK may have potential as novel therapeutics for these diseases. In this review, we provide a comprehensive summary of both indirect and direct AMPK activators and their modes of action in relation to the structure of AMPK. We discuss the functional differences among isoform-specific AMPK complexes and their significance regarding the development of novel AMPK activators and the potential for combining different AMPK activators in the treatment of human disease.
AMP-Activated Protein Kinases*
;
Homeostasis
;
Humans
;
Metabolic Networks and Pathways
;
Metabolism
5.AMPK activators: mechanisms of action and physiological activities.
Joungmok KIM ; Goowon YANG ; Yeji KIM ; Jin KIM ; Joohun HA
Experimental & Molecular Medicine 2016;48(4):e224-
AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis, which coordinates metabolic pathways and thus balances nutrient supply with energy demand. Because of the favorable physiological outcomes of AMPK activation on metabolism, AMPK has been considered to be an important therapeutic target for controlling human diseases including metabolic syndrome and cancer. Thus, activators of AMPK may have potential as novel therapeutics for these diseases. In this review, we provide a comprehensive summary of both indirect and direct AMPK activators and their modes of action in relation to the structure of AMPK. We discuss the functional differences among isoform-specific AMPK complexes and their significance regarding the development of novel AMPK activators and the potential for combining different AMPK activators in the treatment of human disease.
AMP-Activated Protein Kinases*
;
Homeostasis
;
Humans
;
Metabolic Networks and Pathways
;
Metabolism
7.Significance of MEK-ERK cascade in the development of human breast carcinoma.
Shu WANG ; Shan WANG ; Xueguang ZHU ; Jiaqing ZHANG ; Xinmin QIAO ; Yingjiang YE ; Bin LIANG ; Xiangtao MA ; Zhirong CUI
Chinese Journal of Surgery 2002;40(3):171-174
OBJECTIVETo investigate the MEK and ERK expression and their relationship with clinicopathological parameters in human breast carcinoma, and the effect of preoperative chemotherapy on MEK and ERK protein expression.
METHODSSamples were obtained from 56 patients with breast carcinoma and 8 patients with benign tumors. Sixteen of the 56 patients received preoperative chemotherapy. Western blot and immunohistochemistry were used to measure the expression of MEK1, MEK2 and ERK1, ERK2 protein.
RESULTSMEK2 and ERK1, ERK2 protein levels were increased in breast carcinoma tissue compared with those in adjacent normal tissues (t = 7.244, 5.959, 3.735, P < 0.01) and benign tumors (t = 2.206, P < 0.05). The levels of MEK1 were decreased. The expression of MEK2 protein in ER negative patients was higher than that in ER positive ones. MEK2 protein levels were lower in patients who received preoperative chemotherapy than in those who did not.
CONCLUSIONOverexpression of MEK-ERK may play an important role in the development of human breast carcinoma. MEK and ERK protein expressions are inhibited by preoperative chemotherapy.
Adult ; Aged ; Blotting, Western ; Breast Neoplasms ; diagnosis ; enzymology ; metabolism ; Female ; Humans ; Immunohistochemistry ; MAP Kinase Kinase 1 ; MAP Kinase Kinase 2 ; MAP Kinase Signaling System ; physiology ; Middle Aged ; Mitogen-Activated Protein Kinase 1 ; metabolism ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinase Kinases ; metabolism ; Mitogen-Activated Protein Kinases ; metabolism ; Prognosis ; Protein Kinases ; metabolism ; Protein-Serine-Threonine Kinases ; metabolism ; Protein-Tyrosine Kinases ; metabolism
8.Effect on Danggui Shaoyao Powder on mitophagy in rat model of Alzheimer's disease based on PINK1-Parkin pathway.
Miao YANG ; Wen-Jing YU ; Chun-Xiang HE ; Yi-Jie JIN ; Ze LI ; Ping LI ; Si-Si DENG ; Ya-Qiao YI ; Shao-Wu CHENG ; Zhen-Yan SONG
China Journal of Chinese Materia Medica 2023;48(2):534-541
This study investigated the mechanism of Danggui Shaoyao Powder(DSP) against mitophagy in rat model of Alzheimer's disease(AD) induced by streptozotocin(STZ) based on PTEN induced putative kinase 1(PINK1)-Parkin signaling pathway. The AD rat model was established by injecting STZ into the lateral ventricle, and the rats were divided into normal group, model group, DSP low-dose group(12 g·kg~(-1)·d~(-1)), DSP medium-dose group(24 g·kg~(-1)·d~(-1)), and DSP high-dose group(36 g·kg~(-1)·d~(-1)). Morris water maze test was used to detect the learning and memory function of the rats, and transmission electron microscopy and immunofluorescence were employed to detect mitophagy. The protein expression levels of PINK1, Parkin, LC3BⅠ/LC3BⅡ, and p62 were assayed by Western blot. Compared with the normal group, the model group showed a significant decrease in the learning and memory function(P<0.01), reduced protein expression of PINK1 and Parkin(P<0.05), increased protein expression of LC3BⅠ/LC3BⅡ and p62(P<0.05), and decreased occurrence of mitophagy(P<0.01). Compared with the model group, the DSP medium-and high-dose groups notably improved the learning and memory ability of AD rats, which mainly manifested as shortened escape latency, leng-thened time in target quadrants and elevated number of crossing the platform(P<0.05 or P<0.01), remarkably activated mitophagy(P<0.05), up-regulated the protein expression of PINK1 and Parkin, and down-regulated the protein expression of LC3BⅠ/LC3BⅡ and p62(P<0.05 or P<0.01). These results demonstrated that DSP might promote mitophagy mediated by PINK1-Parkin pathway to remove damaged mitochondria and improve mitochondrial function, thereby exerting a neuroprotective effect.
Rats
;
Animals
;
Mitophagy
;
Alzheimer Disease/genetics*
;
Powders
;
Protein Kinases/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*
9.Characterization the response of Chlamydomonas reinhardtii serine/threonine protein kinase mutant to blue light.
Wangning LI ; Mengjing LIANG ; Ze YANG ; Yanan LI ; Chunhui ZHANG ; Chunli JI ; Runzhi LI ; Song QIN ; Jinai XUE ; Hongli CUI
Chinese Journal of Biotechnology 2023;39(11):4563-4579
In order to investigate the molecular mechanism of silk/threonine protein kinase (STK)-mediated blue light response in the algal Chlamydomonas reinhardtii, phenotype identification and transcriptome analysis were conducted for C. reinhardtii STK mutant strain crstk11 (with an AphvIII box reverse insertion in stk11 gene coding region) under blue light stress. Phenotypic examination showed that under normal light (white light), there was a slight difference in growth and pigment contents between the wild-type strain CC5325 and the mutant strain crstk11. Blue light inhibited the growth and chlorophyll synthesis in crstk11 cells, but significantly promoted the accumulation of carotenoids in crstk11. Transcriptome analysis showed that 860 differential expression genes (DEG) (559 up-regulated and 301 down-regulated) were detected in mutant (STK4) vs. wild type (WT4) upon treatment under high intensity blue light for 4 days. After being treated under high intensity blue light for 8 days, a total of 1 088 DEGs (468 upregulated and 620 downregulated) were obtained in STK8 vs. WT8. KEGG enrichment analysis revealed that compared to CC5325, the crstk11 blue light responsive genes were mainly involved in catalytic activity of intracellular photosynthesis, carbon metabolism, and pigment synthesis. Among them, upregulated genes included psaA, psaB, and psaC, psbA, psbB, psbC, psbD, psbH, and L, petA, petB, and petD, as well as genes encoding ATP synthase α, β and c subunits. Downregulated genes included petF and petJ. The present study uncovered that the protein kinase CrSTK11 of C. reinhardtii may participate in the blue light response of algal cells by mediating photosynthesis as well as pigment and carbon metabolism, providing new knowledge for in-depth analysis of the mechanism of light stress resistance in the algae.
Chlamydomonas reinhardtii/genetics*
;
Photosynthesis/genetics*
;
Plants/metabolism*
;
Protein Kinases
;
Threonine/metabolism*
;
Carbon/metabolism*
;
Serine/metabolism*
10.Signal transduction by protein tyrosine kinases and antitumor agents.
Yong-Jun MAO ; Hai-Hong LI ; Jian-Feng LI ; Jing-Shan SHEN
Acta Pharmaceutica Sinica 2008;43(4):323-334
Intracellular signal transduction plays an important role in the process of cellular metabolism, segmentation, differentiation, biological behaviour and cell death. Overactive signal transduction relates to tumor development and progression. Signaling pathways operated by protein tyrosine kinases (PTKs) will be illuminated here briefly. The Ras/Raf/MAPK and PI-3K/Akt pathways through receptor protein tyrosine kinases (RTKs), the Src, Bcr-Abl and JAK/STAT pathways by non-receptor protein tyrosine kinases (nrPTKs) are shown separately. Antitumor agents targeting the key proteins involved in the above five signalling routes are also summarized in this review.
Animals
;
Antineoplastic Agents
;
pharmacology
;
Humans
;
Phosphatidylinositol 3-Kinases
;
metabolism
;
Protein-Tyrosine Kinases
;
metabolism
;
Receptor Protein-Tyrosine Kinases
;
metabolism
;
STAT Transcription Factors
;
metabolism
;
Signal Transduction
;
drug effects
;
ras Proteins
;
metabolism
;
src-Family Kinases
;
metabolism