1.PANoptosis: a New Target for Cardiovascular Diseases
Xin-Nong CHEN ; Ying-Xi YANG ; Xiao-Chen GUO ; Jun-Ping ZHANG ; Na-Wen LIU
Progress in Biochemistry and Biophysics 2025;52(5):1113-1125
The innate immune system detects cellular stressors and microbial infections, activating programmed cell death (PCD) pathways to eliminate intracellular pathogens and maintain homeostasis. Among these pathways, pyroptosis, apoptosis, and necroptosis represent the most characteristic forms of PCD. Although initially regarded as mechanistically distinct, emerging research has revealed significant crosstalk among their signaling cascades. Consequently, the concept of PANoptosis has been proposed—an inflammatory cell death pathway driven by caspases and receptor-interacting protein kinases (RIPKs), and regulated by the PANoptosome, which integrates key features of pyroptosis, apoptosis, and necroptosis. The core mechanism of PANoptosis involves the assembly and activation of the PANoptosome, a macromolecular complex composed of three structural components: sensor proteins, adaptor proteins, and effector proteins. Sensors detect upstream stimuli and transmit signals downstream, recruiting critical molecules via adaptors to form a molecular scaffold. This scaffold activates effectors, triggering intracellular signaling cascades that culminate in PANoptosis. The PANoptosome is regulated by upstream molecules such as interferon regulatory factor 1 (IRF1), transforming growth factor beta-activated kinase 1 (TAK1), and adenosine deaminase acting on RNA 1 (ADAR1), which function as molecular switches to control PANoptosis. Targeting these switches represents a promising therapeutic strategy. Furthermore, PANoptosis is influenced by organelle functions, including those of the mitochondria, endoplasmic reticulum, and lysosomes, highlighting organelle-targeted interventions as effective regulatory approaches. Cardiovascular diseases (CVDs), the leading global cause of morbidity and mortality, are profoundly impacted by PCD. Extensive crosstalk among multiple cell death pathways in CVDs suggests a complex regulatory network. As a novel cell death modality bridging pyroptosis, apoptosis, and necroptosis, PANoptosis offers fresh insights into the complexity of cell death and provides innovative strategies for CVD treatment. This review summarizes current evidence linking PANoptosis to various CVDs, including myocardial ischemia/reperfusion injury, myocardial infarction, heart failure, arrhythmogenic cardiomyopathy, sepsis-induced cardiomyopathy, cardiotoxic injury, atherosclerosis, abdominal aortic aneurysm, thoracic aortic aneurysm and dissection, and vascular toxic injury, thereby providing critical clinical insights into CVD pathophysiology. However, the current understanding of PANoptosis in CVDs remains incomplete. First, while PANoptosis in cardiomyocytes and vascular smooth muscle cells has been implicated in CVD pathogenesis, its role in other cell types—such as vascular endothelial cells and immune cells (e.g., macrophages)—warrants further investigation. Second, although pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are known to activate the PANoptosome in infectious diseases, the stimuli driving PANoptosis in CVDs remain poorly defined. Additionally, methodological challenges persist in identifying PANoptosome assembly in CVDs and in establishing reliable PANoptosis models. Beyond the diseases discussed, PANoptosis may also play a role in viral myocarditis and diabetic cardiomyopathy, necessitating further exploration. In conclusion, elucidating the role of PANoptosis in CVDs opens new avenues for drug development. Targeting this pathway could yield transformative therapies, addressing unmet clinical needs in cardiovascular medicine.
2.Effect of Yuxuebi Tablets on mice with inflammatory pain based on GPR37-mediated inflammation resolution.
Ying LIU ; Guo-Xin ZHANG ; Xue-Min YAO ; Wen-Li WANG ; Ao-Qing HUANG ; Hai-Ping WANG ; Chun-Yan ZHU ; Na LIN
China Journal of Chinese Materia Medica 2025;50(1):178-186
In order to investigate whether the effect of Yuxuebi Tablets on the peripheral and central inflammation resolution of mice with inflammatory pain is related to their regulation of G protein-coupled receptor 37(GPR37), an inflammatory pain model was established by injecting complete Freund's adjuvant(CFA) into the paws of mice, with a sham-operated group receiving a similar volume of normal saline. The mice were assigned randomly to the sham-operated group, model group, ibuprofen group(91 mg·kg~(-1)), and low-, medium-, and high-dose groups of Yuxuebi Tablets(60, 120, and 240 mg·kg~(-1)). The drug was administered orally from days 1 to 19 after modeling. Von Frey method and the hot plate test were used to detect mechanical pain thresholds and heat hyperalgesia. The levels of interleukin-10(IL-10) and transforming growth factor-beta(TGF-β) in the spinal cord were quantified using enzyme-linked immunosorbent assay(ELISA), and the mRNA and protein expression of GPR37 in the spinal cord was measured by real-time quantitative reverse transcription PCR(qRT-PCR) and Western blot. Additionally, immunofluorescence was used to detect the expression of macrosialin antigen(CD68), mannose receptor(MRC1 or CD206), and GPR37 in dorsal root ganglia, as well as the expression of calcium-binding adapter molecule 1(IBA1), CD206, and GPR37 in the dorsal horn of the spinal cord. The results showed that compared with those of the sham-operated group, the mechanical pain thresholds and hot withdrawal latency of the model group significantly declined, and the expression of CD68 in the dorsal root ganglia and the expression of IBA1 in the dorsal horn of the spinal cord significantly increased. The expression of CD206 and GPR37 significantly decreased in the dorsal root ganglion and dorsal horn of the spinal cord, and IL-10 and TGF-β levels in the spinal cord were significantly decreased. Compared with those of the model group, the mechanical pain thresholds and hot withdrawal latency of the high-dose group of Yuxuebi Tablets significantly increased, and the expression of CD68 in the dorsal root ganglion and IBA1 in the dorsal horn of the spinal cord significantly decreased. The expression of CD206 and GPR37 in the dorsal root ganglion and dorsal horn of the spinal cord significantly increased, as well as IL-10 and TGF-β levels in the spinal cord. These findings indicated that Yuxuebi Tablets may reduce macrophage(microglial) infiltration and foster M2 macrophage polarization by enhancing GPR37 expression in the dorsal root ganglia and dorsal horn of the spinal cord of CFA-induced mice, so as to improve IL-10 and TGF-β levels, promote resolution of both peripheral and central inflammation, and play analgesic effects.
Inflammation/genetics*
;
Pain/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Mice
;
Freund's Adjuvant/pharmacology*
;
Ibuprofen
;
Pain Threshold/drug effects*
;
Hyperalgesia/genetics*
;
Ganglia, Spinal
;
Interleukin-10/genetics*
;
Transforming Growth Factor beta/genetics*
;
Reverse Transcriptase Polymerase Chain Reaction
;
Tablets
;
Receptors, G-Protein-Coupled
3.Construction of Saccharomyces cerevisiae cell factory for efficient biosynthesis of ferruginol.
Mei-Ling JIANG ; Zhen-Jiang TIAN ; Hao TANG ; Xin-Qi SONG ; Jian WANG ; Ying MA ; Ping SU ; Guo-Wei JIA ; Ya-Ting HU ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(4):1031-1042
Diterpenoid ferruginol is a key intermediate in biosynthesis of active ingredients such as tanshinone and carnosic acid.However, the traditional process of obtaining ferruginol from plants is often cumbersome and inefficient. In recent years, the increasingly developing gene editing technology has been gradually applied to the heterologous production of natural products, but the production of ferruginol in microbe is still very low, which has become an obstacle to the efficient biosynthesis of downstream chemicals, such as tanshinone. In this study, miltiradiene was produced by integrating the shortened diterpene synthase fusion protein,and the key genes in the MVA pathway were overexpressed to improve the yield of miltiradiene. Under the shake flask fermentation condition, the yield of miltiradiene reached about(113. 12±17. 4)mg·L~(-1). Subsequently, this study integrated the ferruginol synthase Sm CYP76AH1 and Sm CPR1 to reconstruct the ferruginol pathway and thereby realized the heterologous synthesis of ferruginol in Saccharomyces cerevisiae. The study selected the best ferruginol synthase(Il CYP76AH46) from different plants and optimized the expression of pathway genes through redox partner engineering to increase the yield of ferruginol. By increasing the copy number of diterpene synthase, CYP450, and CPR, the yield of ferruginol reached(370. 39± 21. 65) mg·L~(-1) in the shake flask, which was increased by 21. 57-fold compared with that when the initial ferruginol strain JMLT05 was used. Finally, 1 083. 51 mg·L~(-1) ferruginol was obtained by fed-batch fermentation, which is the highest yield of ferruginol from biosynthesis so far. This study provides not only research ideas for other metabolic engineering but also a platform for the construction of cell factories for downstream products.
Saccharomyces cerevisiae/genetics*
;
Diterpenes/metabolism*
;
Metabolic Engineering
;
Fermentation
;
Abietanes
4.Effects of Hot Night Exposure on Human Semen Quality: A Multicenter Population-Based Study.
Ting Ting DAI ; Ting XU ; Qi Ling WANG ; Hao Bo NI ; Chun Ying SONG ; Yu Shan LI ; Fu Ping LI ; Tian Qing MENG ; Hui Qiang SHENG ; Ling Xi WANG ; Xiao Yan CAI ; Li Na XIAO ; Xiao Lin YU ; Qing Hui ZENG ; Pi GUO ; Xin Zong ZHANG
Biomedical and Environmental Sciences 2025;38(2):178-193
OBJECTIVE:
To explore and quantify the association of hot night exposure during the sperm development period (0-90 lag days) with semen quality.
METHODS:
A total of 6,640 male sperm donors from 6 human sperm banks in China during 2014-2020 were recruited in this multicenter study. Two indices (i.e., hot night excess [HNE] and hot night duration [HND]) were used to estimate the heat intensity and duration during nighttime. Linear mixed models were used to examine the association between hot nights and semen quality parameters.
RESULTS:
The exposure-response relationship revealed that HNE and HND during 0-90 days before semen collection had a significantly inverse association with sperm motility. Specifically, a 1 °C increase in HNE was associated with decreased sperm progressive motility of 0.0090 (95% confidence interval [ CI]: -0.0147, -0.0033) and decreased total motility of 0.0094 (95% CI: -0.0160, -0.0029). HND was significantly associated with reduced sperm progressive motility and total motility of 0.0021 (95% CI: -0.0040, -0.0003) and 0.0023 (95% CI: -0.0043, -0.0002), respectively. Consistent results were observed at different temperature thresholds on hot nights.
CONCLUSION
Our findings highlight the need to mitigate nocturnal heat exposure during spermatogenesis to maintain optimal semen quality.
Humans
;
Male
;
Semen Analysis
;
Adult
;
Sperm Motility
;
Hot Temperature/adverse effects*
;
China
;
Middle Aged
;
Spermatozoa/physiology*
;
Young Adult
5.Study on the mechanism of regulating bile acid metabolism to improve diabetic encephalopathy by Zishenwan Prescription
Ping LIU ; Genhui YANG ; Fanyu MENG ; Ying LI ; Mengxi XU ; Hong GUO ; Yanjun ZHANG ; Qingsheng YIN ; Pengwei ZHUANG
International Journal of Traditional Chinese Medicine 2024;46(7):860-866
Objective:To examine the effects of Zishenwan Prescription on bile acid metabolism in mice with diabetic encephalopathy; To explore its mechanism of improvement of diabetic encephalopathy.Methods:Male C57BL/6J mice were used to replicate the mouse model of type 2 diabetes mellitus by using high-fat chow and a single intraperitoneal injection of streptozotocin (120 mg/kg). The mice were screened for diabetic encephalopathy by using the Morris water maze test after 8 weeks of continuous stimulation with hyperglycemia, and were divided into model group and Zishenwan Prescription group according to random number table method, with 12 mice in each group. The mice in the Zishenwan Prescription group were treated with the crude extract of Zishenwan Prescription (9.36 g/kg) by gavage, and the normal group and the model group were treated with the same volume of distilled water once a day for 8 weeks. At the end of the treatment, Morris water maze test was used to investigate the cognitive function of diabetic encephalopathy mice; cresyl violet staining was used to detect the number of granule neurons in the hippocampus; serum and feces were collected to detect the content of bile acids by liquid-liquid coupling; hepatic bile acid synthase CYP7a1 and CYP27a1, farnesol X receptor (FXR), fibroblast growth factor 15 (FGF15), fibroblast growth factor receptor 4 (FGFR4), and ileocecal apical sodium-dependent bile acid transporter protein (ABST) mRNA levels were detected by using fluorescence quantitative PCR assay.Results:Compared with the model group, mice in the Zishenwan Prescription group had shorter evasion latency time ( P<0.05 or P<0.01), decreased time to first reach the platform ( P<0.01), increased number of times to traverse the platform ( P<0.01), and reduced neuronal cell damage in hippocampal area; mice in the Zishenwan Prescription group showed decreased serum and fecal total bile acid content ( P<0.05 or P<0.01); the liver CYP7a1 and CYP27a1 mRNA expressions increased ( P<0.01), and FXR and FGF15 mRNA expressions decreased ( P<0.01); ileal ABST mRNA expression decreased ( P<0.01). Conclusion:Zishenwan Prescription may regulate bile acid metabolism, inhibit FRX-FGF15/FGFR4 signaling and ABST expression to promote new bile acid synthesis and conjugated bile acid reabsorption, and thus improve cognitive function in diabetic encephalopathy mice.
6.Study on Down-regulation of Interleukin-1β Secretion by Inhibiting ABCC1/MRP1 Transporter
Yuan-Yuan CHEN ; Pei-Ting YING ; Wen-Wen WENG ; Mei-Xin FANG ; Jiang LI ; Ze-Bin LUO ; Ming JIA ; Xiao-Ping GUO ; Ling-Yan ZHANG ; Xiao-Jun XU ; Yong-Min TANG
Journal of Experimental Hematology 2024;32(3):911-919
Objective:To screen interleukin(IL)-1β secretion-related membrane transporters by macrophage experiment in vitro and conventional knockout mice.Methods:THP-1 cell line was differentiated to obtain human THP-1-derived macrophages,and the primary macrophages were obtained from human peripheral blood.FVB wild-type mice with the same sex and age were used as the controls of MRP1 knockout mice.The macrophages in abdominal cavity and bone marrow of mice were cultivated.The cells were treated with ABCC1/MRP1,ABCG2/BCRP,ABCB1/P-gp,OATP1B1,and MATE transporter inhibitors,then stimulated by lipopolysaccharide and adenosine triphosphate.The secretion level of IL-iβ was detected by ELISA,Western blot,and immunofluorescence.Results:After inhibiting ABCC1/MRP1 transporter,the secretion of IL-1β decreased significantly,while inhibition of the other 4 transporters had no effect.In animal experiment,the level of IL-1 β secreted by macrophages in bone marrow of MRP1 knockout mice was significantly lower than control group(P<0.05).Conclusion:ABCC1/MRP1 transporter is a newly discovered IL-1β secretion pathway,which is expected to become a new target for solving clinical problems such as cytokine release syndrome.
7.Pharmacokinetic Study of Coagulation Factor Ⅷ in Adults with Severe Hemophilia A
Ying ZHANG ; Zhi-Fang GUO ; Jing-Jing WANG ; Wen-Liang LU ; Jin-Yu HAO ; Xin WANG ; Zhi-Juan PAN ; Yan-Ru GUO ; Xin-Lei GUO ; Jia-Jia SUN ; Bo JIANG ; Zhi LI ; Zhi-Ping GUO
Journal of Experimental Hematology 2024;32(5):1509-1517
Objective:To detect the pharmacokinetic(PK)parameters of coagulation factor Ⅷ(FⅧ)in adult patients with severe hemophilia A,identify the potential factors influencing FⅧ PK,and optimize the use of FⅧ in individual prophylaxis regimens.Methods:PK characteristics of FⅧ were studied in a total of 23 severe hemophilia A adults.The correlation of patients'characteristics including age,von Willebrand factor antigen(vWF:Ag),blood group,weight,body mass index(BMI)and FⅧ genotype,with FⅧ PK were evaluated.Individual prophylaxis regimens were given based on FⅧ PK parameters.Results:The mean terminal half-life(t1/2)of FⅧ was 20.6±9.3 h,ranged from 11.47 h to 30.12 h.The age(r=0.580)and vWF:Ag(r=0.814)were significantly positively correlated with t1/2 of FⅧ.The mean area under the plasma concentration curve(AUC)of FⅧ was 913±399(328-1 878)IU h/dl,and the AUC of FⅧ was positively correlated with age(r=0.557)and vWF:Ag(r=0.784).The mean residence time(MRT)of FⅧ was 24.7±12.4(13.2-62.2)h,and the MRT of FⅧ was positively correlated with age(r=0.664)and vWF:Ag(r=0.868).The mean in vivo recovery(IVR)of FⅧ was 2.59±0.888(1.5-4.29)IU/dl per IU/kg,the mean clearance(CL)of FⅧ was 3±1.58(0.97-7.18)ml/(kg·h),and there was no significant correlation of IVR and CL with age and vWF:Ag.According to the individual PK parameters,ultra low-dose,low-dose and moderate-dose FⅧ were applied to 15,6,2 adults patients with severe hemophilia A for prophylaxis,respectively.Conclusion:There are significant individual differences in the FⅧ half-life of adult patients with severe hemophilia A.The older the patient,the higher the vWF:Ag level,and the longer the FⅧ half-life.Individual administration is required based on the FⅧ PK parameters to optimize prophylaxis treatment.
8.Genetic Mutation Profile and Risk Stratification of Cytogenetically Normal Acute Myeloid Leukemia with CEBPA-bZIP Mutations Based on Multi-Gene Sequencing
Lei-Ming CAO ; Ming-Yue LIAO ; Ya-Lan ZHOU ; Hao JIANG ; Qian JIANG ; Ying-Jun CHANG ; Lan-Ping XU ; Xiao-Hui ZHANG ; Xiao-Jun HUANG ; Guo-Rui RUAN
Journal of Experimental Hematology 2024;32(6):1631-1637
Objective:To evaluate the gene mutation profile and prognostic significance of adult cytogenetically normal acute myeloid leukemia (CN-AML) with CEBPA-bZIP mutation. Methods:Targeted sequencing was implemented on the diagnostic bone marrow DNA samples of 141 adult CN-AML subjects with CEBPA-bZIP mutation. The nomogram model for leukemia-free survival (LFS) rate was generated by combining genetic abnormalities and clinical data. Risk stratification was conducted based on prognostic variables and the effect of risk-adjusted consolidation therapy was investigated by Kaplan-Meier method. Results:Four variables were finally included in our nomogram model after multivariate Cox analysis,and an equation for risk score calculation was obtained,risk score=1.3002×white blood cell (WBC) (≥18.77×109/L)+1.4065×CSF3R mutation positive+2.6489×KMT2A mutation positive+1.0128×DNA methylation-related genes mutation positive. According to the nomogram model,patients were further divided into low-risk group (score=0,n=46) and high-risk group (score>0,n=95). Prognostic analysis showed that the 5-year LFS rate,5-year overall survival (OS) rate,and 5-year cumulative incidence of relapse (CIR) of patients who received allogeneic hematopoietic stem cell transplantation (allo-HSCT) in the high-risk group were 93.5%,97.1%,and 3.5%,while those in patients who received maintenance chemotherapy were 32.9%,70.5%,and 63.4%,respectively. The differences were statistically significant (all P<0.05). Allo-HSCT could significantly improve the prognosis of patients in high-risk group. However,no corresponding benefit was observed in the low-risk group. Conclusion:Adult CN-AML with CEBPA-bZIP mutation has a complex co-mutation pattern. The nomogram model based on mutations of CFS3R,KMT2A and DNA methylation-related genes together with WBC count can further divide this subset of patients into a relatively low-risk group and a relatively high-risk group. For individuals in the high-risk group,allo-HSCT is proposed as post-remission therapy. The above data will benefit the prognosis estimation and treatment decision for adult CN-AML with CEBPA-bZIP mutation.
9.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
10.PRMT7 Regulates Adipogenic Differentiation of hBMSCs by Modulating IGF-1 Signaling
Qian GUO ; Jia QING ; Da-Zhuang LU ; Xu WANG ; Yang LI ; Hui ZHANG ; Ying-Fei ZHANG ; Yun-Song LIU ; Yong-Sheng ZHOU ; Ping ZHANG
Progress in Biochemistry and Biophysics 2024;51(6):1406-1417
ObjectiveProtein arginine methyltransferases (PRMTs) play pivotal roles in numerous cellular biological processes. However, the precise regulatory effects of PRMTs on the fate determination of mesenchymal stromal/stem cells (MSCs) remain elusive. Our previous studies have shed light on the regulatory role and molecular mechanism of PRMT5 in MSC osteogenic differentiation. This study aims to clarify the role and corresponding regulatory mechanism of PRMT7 during the adipogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Methods(1) Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured in a medium that induces adipogenesis. We used qRT-PCR and Western blot to monitor changes in PRMT7 expression during adipogenic differentiation. (2) We created a cell line with PRMT7 knocked down and assessed changes in PRMT7 expression and adipogenic capacity using Oil Red O staining, qRT-PCR and Western blot. (3) We implanted hBMSCs cell lines mixed with a collagen membrane subcutaneously into nude mice and performed Oil Red O staining to observe ectopic lipogenesis in vivo. (4) A cell line overexpressing PRMT7 was generated, and we examined changes in PRMT7 expression using qRT-PCR and Western blot. We also performed Oil Red O staining and quantitative analysis after inducing the cells in lipogenic medium. Additionally, we assessed changes in PPARγ expression. (5) We investigated changes in insulin-like growth factor 1 (IGF-1) expression in both PRMT7 knockdown and overexpressing cell lines using qRT-PCR and Western blot, to understand PRMT7’s regulatory effect on IGF-1 expression. siIGF-1 was transfected into the PRMT7 knockdown cell line to inhibit IGF-1 expression, and knockdown efficiency was confirmed. Then, we induced cells from the control and knockdown groups transfected with siIGF-1 in lipogenic medium and performed Oil Red O staining and quantitative analysis. Finally, we assessed PPARγ expression to explore IGF-1’s involvement in PRMT7’s regulation of adipogenic differentiation in hBMSCs. Results(1) During the adipogenesis process of hBMSCs, the expression level of PRMT7 was significantly reduced (P<0.01). (2) The adipogenic differentiation ability of PRMT7 knockdown group was significantly stronger than that of control group (P<0.001). (3) The ectopic adipogenic differentiation ability of PRMT7 knockdown group was significantly stronger than that of control group. (4) The adipogenic differentiation ability of the PRMT7 overexpression group was significantly weaker than that of the control group (P<0.01). (5) The expression level of IGF-1 increased after PRMT7 knockdown (P<0.000 1). The expression level of IGF-1 decreased after PRMT7 overexpression (P<0.000 1), indicating that PRMT7 regulates the expression of IGF-1. After siIGF-1 transfection, the expression level of IGF-1 in all cell lines decreased significantly (P<0.001). The ability of adipogenic differentiation of knockdown group transfected with siIGF-1 was significantly reduced (P<0.01), indicating that IGF-1 affects the regulation of PRMT7 on adipogenic differentiation of hBMSCs. ConclusionIn this investigation, our findings elucidate the inhibitory role of PRMT7 in the adipogenic differentiation of hBMSCs, as demonstrated through both in vitro cell-level experiments and in vivo subcutaneous transplantation experiments conducted in nude mice. Mechanistic exploration revealed that PRMT7’s regulatory effect on the adipogenic differentiation of hBMSCs operates via modulation of IGF-1 signaling pathway. These collective findings underscore PRMT7 as a potential therapeutic target for fatty metabolic disorders, thereby offering a novel avenue for leveraging PRMT7 and hBMSCs in the therapeutic landscape of relevant diseases.

Result Analysis
Print
Save
E-mail