1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Analysis of Dry Eye Animal Models Based on Clinical Disease and Syndrome Characteristics in Traditional Chinese and Western Medicine
Guicheng LIU ; Yao CHEN ; Binan WANG ; Pei LIU ; Jun PENG ; Sainan TIAN ; Qinghua PENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):200-208
ObjectiveAccording to the etiology, pathogenesis, and clinical characteristics of dry eye (DE), this paper aims to analyze existing DE animal models to provide recommendations for building more clinically relevant DE models that integrate traditional Chinese and Western medicine. MethodsBy the retrieval and analysis of relevant literature on DE animal experiments, combined with expert consensus, an evaluation scale was created to assess relevance from the perspectives of pathogenesis, diagnostic criteria, and traditional Chinese medicine (TCM) differentiation. On the basis of data provided by the literature, the clinical relevance was evaluated for the animal models constructed in the literature. ResultsAmong the existing methods for establishing a DE animal model, benzalkonium chloride eye-drop induction showed the highest clinical relevance, demonstrating 98% alignment with Western medicine. However, current models generally showed higher relevance to Western medicine than to TCM, and there was a lack of models integrating disease with syndrome. ConclusionAs DE involves diverse causes and pathogenesis, single-factor models cannot fully simulate the complex pathology of DE. Future research should focus on building multi-mechanism DE models, exploring new etiological directions, standardizing model evaluation systems, and promoting integration of traditional Chinese and Western medicine. This will help precisely simulate the pathophysiological process of human DE and provide more valuable guidance for clinical diagnosis and treatment, ultimately enhancing patient outcomes and satisfaction.
7.Tetrahydropalmatine acts on α7nAChR to regulate inflammation and polarization of BV2 microglia.
Yan-Jun WANG ; Guo-Liang DAI ; Pei-Yao CHEN ; Hua-Xi HANG ; Xin-Fang BIAN ; Yu-Jie CHEN ; Wen-Zheng JU
China Journal of Chinese Materia Medica 2025;50(11):3117-3126
Based on the α7 nicotinic acetylcholine receptor(α7nAChR), this study examined how tetrahydropalmatine(THP) affected BV2 microglia exposed to lipopolysaccharide(LPS), aiming to clarify the possible mechanism underlying the anti-depression effect of THP from the perspectives of preventing inflammation and regulating polarization. First, after molecular docking and determination of the content of Corydalis saxicola Bunting total alkaloids, THP was initially identified as a possible anti-depression component. The BV2 microglia model of inflammation was established with LPS. BV2 microglia were allocated into a normal group, a model group, low-and high-dose(20 and 40 μmol·L~(-1), respectively) THP groups, and a THP(20 μmol·L~(-1))+α7nAChR-specific antagonist MLA(1 μmol·L~(-1)) group. The CCK-8 assay was used to screen the safe concentration of THP. A light microscope was used to examine the morphology of the cells. Western blot and immunofluorescence were used to determine the expression of α7nAChR. qRT-PCR was performed to determine the mRNA levels of inducible nitric oxide synthase(iNOS), cluster of differentiation 86(CD86), suppressor of cytokine signaling 3(SOCS3), arginase-1(Arg-1), cluster of differentiation 206(CD206), tumor necrosis factor(TNF)-α, interleukin(IL)-6, and IL-1β. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. The experimental results showed that THP at concentrations of 40 μmol·L~(-1) and below had no effect on BV2 microglia. THP improved the morphology of BV2 microglia, significantly up-regulated the protein level of α7nAChR, significantly down-regulated the mRNA levels of iNOS, CD86, SOCS3, TNF-α, IL-6, and IL-1β, significantly up-regulated the mRNA levels of Arg-1 and CD206, and dramatically lowered the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. However, the antagonist MLA abolished the above-mentioned ameliorative effects of THP on LPS-treated BV2 microglia. As demonstrated by the aforementioned findings, THP protected LPS-treated BV2 microglia by regulating the M1/M2 polarization and preventing inflammation, which might be connected to the regulation of α7nAChR on BV2 microglia.
Berberine Alkaloids/chemistry*
;
alpha7 Nicotinic Acetylcholine Receptor/chemistry*
;
Microglia/metabolism*
;
Mice
;
Animals
;
Cell Line
;
Corydalis/chemistry*
;
Humans
;
Molecular Docking Simulation
;
Inflammation/drug therapy*
;
Nitric Oxide Synthase Type II/immunology*
;
Tumor Necrosis Factor-alpha/immunology*
8.Regulatory effects of Dangua Humai Oral Liquid on gut microbiota and mucosal barrier in mice with glucolipid metabolism disorder.
Zhuang HAN ; Lin-Xi JIN ; Zhi-Ta WANG ; Liu-Qing YANG ; Liang LI ; Yi RUAN ; Qi-Wei CHEN ; Shu-Hong YAO ; Xian-Pei HENG
China Journal of Chinese Materia Medica 2025;50(15):4315-4324
The gut microbiota regulates intestinal nutrient absorption, participates in modulating host glucolipid metabolism, and contributes to ameliorating glucolipid metabolism disorder. Dysbiosis of the gut microbiota can compromise the integrity of the intestinal mucosal barrier, induce inflammatory responses, and exacerbate insulin resistance and abnormal lipid metabolism in the host. Dangua Humai Oral Liquid, a hospital-developed formulation for regulating glucolipid metabolism, has been granted a national invention patent and demonstrates significant clinical efficacy. This study aimed to investigate the effects of Dangua Humai Oral Liquid on gut microbiota and the intestinal mucosal barrier in a mouse model with glucolipid metabolism disorder. A glucolipid metabolism disorder model was established by feeding mice a high-glucose and high-fat diet. The mice were divided into a normal group, a model group, and a treatment group, with eight mice in each group. The treatment group received a daily gavage of Dangua Humai Oral Liquid(20 g·kg~(-1)), while the normal group and model group were given an equivalent volume of sterile water. After 15 weeks of intervention, glucolipid metabolism, intestinal mucosal barrier function, and inflammatory responses were evaluated. Metagenomics and untargeted metabolomics were employed to analyze changes in gut microbiota and associated metabolic pathways. Significant differences were observed between the indicators of the normal group and the model group. Compared with the model group, the treatment group exhibited marked improvements in glucolipid metabolism disorder, alleviated pathological damage in the liver and small intestine tissue, elevated expression of recombinant claudin 1(CLDN1), occluding(OCLN), and zonula occludens 1(ZO-1) in the small intestine tissue, and reduced serum levels of inflammatory factors lipopolysaccharides(LPS), lipopolysaccharide-binding protein(LBP), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α). At the phylum level, the relative abundance of Bacteroidota decreased, while that of Firmicutes increased. Lipid-related metabolic pathways were significantly altered. In conclusion, based on the successful establishment of the mouse model of glucolipid metabolism disorder, this study confirmed that Dangua Humai Oral Liquid effectively modulates gut microbiota and mucosal barrier function, reduces serum inflammatory factor levels, and regulates lipid-related metabolic pathways, thereby ameliorating glucolipid metabolism disorder.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Mice
;
Intestinal Mucosa/microbiology*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
;
Humans
;
Glycolipids/metabolism*
;
Lipid Metabolism/drug effects*
;
Administration, Oral
;
Disease Models, Animal
9.Association of short-term air pollution with risk of major adverse cardiovascular event mortality and modification effects of lifestyle in Chinese adults.
Wendi XIAO ; Xin YAO ; Yinqi DING ; Junpei TAO ; Canqing YU ; Dianjianyi SUN ; Pei PEI ; Ling YANG ; Yiping CHEN ; Huaidong DU ; Dan SCHMIDT ; Yaoming ZHAI ; Junshi CHEN ; Zhengming CHEN ; Jun LV ; Liqiang ZHANG ; Tao HUANG ; Liming LI
Environmental Health and Preventive Medicine 2025;30():38-38
BACKGROUND:
Previous evidence showed that ambient air pollution and cardiovascular mortality are related. However, there is a lack of evidence towards the modification effect of long-term lifestyle on the association between short-term ambient air pollution and death from cardiovascular events.
METHOD:
A total of 14,609 death from major adverse cardiovascular events (MACE) were identified among the China Kadoorie Biobank participants from 2013 to 2018. Ambient air pollution exposure including particulate matter 2.5 (PM2.5), SO2, NO2, CO, and O3 from the same period were obtained from space-time model reconstructions based on remote sensing data. Case-crossover design and conditional logistic regression was applied to estimate the effect of short-term exposure to air pollutants on MACE mortality.
RESULTS:
We found MACE mortality was significantly associated with PM2.5 (relative percent increase 2.91% per 10 µg/m3 increase, 95% CI 1.32-4.53), NO2 (5.37% per 10 µg/m3 increase, 95% CI 1.56-9.33), SO2 (6.82% per 10 µg/m3 increase, 95% CI 2.99-10.80), and CO (2.24% per 0.1 mg/m3 increase, 95% CI 1.02-3.48). Stratified analyses indicated that drinking was associated with elevated risk of MACE mortality with NO2 and SO2 exposure; physical inactivity was associated with higher risk of death from MACE when exposed to PM2.5; and people who had balanced diet had lower risk of MACE mortality when exposed to CO and NO2.
CONCLUSIONS
The study results showed that short-term exposure to ambient PM2.5, NO2, SO2, and CO would aggravate the risk of cardiovascular mortality, yet healthy lifestyle conduct might mitigate such negative impact to some extent.
Humans
;
Cardiovascular Diseases/epidemiology*
;
China/epidemiology*
;
Male
;
Female
;
Air Pollution/adverse effects*
;
Middle Aged
;
Air Pollutants/analysis*
;
Particulate Matter/analysis*
;
Environmental Exposure/adverse effects*
;
Life Style
;
Aged
;
Adult
;
Risk Factors
;
Cross-Over Studies
;
East Asian People
10.Study design and rationale of the TXL-CAP trial: a randomized, double-blind, placebo-controlled, multicenter clinical trial assessing the effect of Tongxinluo capsules on the stability of coronary atherosclerotic plaques.
Mei NI ; Yun TI ; Yan QI ; Meng ZHANG ; Dayue Darrel DUAN ; Chen YAO ; Zhen-Hua JIA ; Yun ZHANG ; Pei-Li BU
Journal of Geriatric Cardiology 2025;22(7):615-624
Recent clinical trials have demonstrated a protective effect in using traditional Chinese medicine Tongxinluo (TXL) capsule to treat atherosclerosis. However, clinical evidence of the effects of TXL treatment on coronary plaque vulnerability is unavailable. In response, we developed this study to investigate the hypothesis that on the basis of statin therapy, treatment with TXL capsule may stabilize coronary lesions in patients with acute coronary syndrome (ACS). The TXL-CAP study was an investigator-initiated, randomized, double-blind clinical trial conducted across 18 medical centers in China. Patients with ACS aging from 18 to 80 years old who had a non-intervened coronary target lesion with a fibrous cap thickness (FCT) < 100 μm and lipid arc > 90° as defined by optical coherence tomography (OCT) were recruited. A total of 220 patients who met the selection criteria but did not meet the exclusion criteria will be finally recruited and randomized to receive treatment with TXL (n = 110) or placebo (n = 110) for a duration of 12 months. The primary endpoint was the difference in the minimum FCT of the coronary target lesion between TXL and placebo groups at the end of the 12-month follow-up. Secondary endpoints included: (1) changes of the maximum lipid arc and length of the target plaque, and the percentage of lipid, fibrous, and calcified plaques at the end of the 12-month period; (2) the incidence of composite cardiovascular events and coronary revascularization within the 12 months; (3) changes in the grade and scores of the angina pectoris as assessed using the Canadian Cardiovascular Society (CCS) grading system and Seattle angina questionnaire (SAQ) score, respectively; and (4) changes in hs-CRP serum levels. The results of the TXL-CAP trial will provide additional clinical data for revealing whether TXL capsules stabilizes coronary vulnerable plaques in Chinese ACS patients.

Result Analysis
Print
Save
E-mail