1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Expression and prognostic value of triggering receptor expressed on myeloid cells-1 in patients with cirrhotic ascites and intra-abdominal infection
Feng WEI ; Xinyan YUE ; Xiling LIU ; Huimin YAN ; Lin LIN ; Tao HUANG ; Yantao PEI ; Shixiang SHAO ; Erhei DAI ; Wenfang YUAN
Journal of Clinical Hepatology 2025;41(5):914-920
ObjectiveTo analyze the expression level of triggering receptor expressed on myeloid cells-1 (TREM-1) in serum and ascites of patients with cirrhotic ascites, and to investigate its correlation with clinical features and inflammatory markers and its role in the diagnosis of infection and prognostic evaluation. MethodsA total of 110 patients with cirrhotic ascites who were hospitalized in The Fifth Hospital of Shijiazhuang from January 2019 to December 2020 were enrolled, and according to the presence or absence of intra-abdominal infection, they were divided into infection group with 72 patients and non-infection group with 38 patients. The patients with infection were further divided into improvement group with 38 patients and non-improvement group with 34 patients. Clinical data and laboratory markers were collected from all patients. Serum and ascites samples were collected, and ELISA was used to measure the level of TREM-1. The independent-samples t test was used for comparison of normally distributed continuous data between two groups; the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between two groups, and the Kruskal-Wallis H test was used for comparison between multiple groups; the chi-square test was used for comparison of categorical data between two groups. A Spearman correlation analysis was used to investigate the correlation between indicators. A multivariate Logistic regression analysis was used to identify the influencing factors for the prognosis of patients with cirrhotic ascites and infection. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic and prognostic efficacy of each indicator, and the Delong test was used for comparison of the area under the ROC curve (AUC). ResultsThe level of TREM-1 in ascites was significantly positively correlated with that in serum (r=0.50, P<0.001). Compared with the improvement group, the non-improvement group had a significantly higher level of TREM-1 in ascites (Z=-2.391, P=0.017) and serum (Z=-2.544, P=0.011), and compared with the non-infection group, the infection group had a significantly higher level of TREM-1 in ascites (Z=-3.420, P<0.001), while there was no significant difference in the level of TREM-1 in serum between the two groups (P>0.05). The level of TREM-1 in serum and ascites were significantly positively correlated with C-reactive protein (CRP), procalcitonin (PCT), white blood cell count, and neutrophil-lymphocyte ratio (r=0.288, 0.344, 0.530, 0.510, 0.534, 0.454, 0.330, and 0.404, all P<0.05). The ROC curve analysis showed that when PCT, CRP, and serum or ascitic TREM-1 were used in combination for the diagnosis of cirrhotic ascites with infection, the AUCs were 0.715 and 0.740, respectively. The multivariate Logistic regression analysis showed that CRP (odds ratio [OR]=1.019, 95% confidence interval [CI]: 1.001 — 1.038, P=0.043) and serum TREM-1 (OR=1.002, 95%CI: 1.000 — 1.003, P=0.016) were independent risk factors for the prognosis of patients with cirrhotic ascites and infection, and the combination of these two indicators had an AUC of 0.728 in predicting poor prognosis. ConclusionThe level of TREM-1 is closely associated with the severity of infection and prognosis in patients with cirrhotic ascites, and combined measurement of TREM-1 and CRP/PCT can improve the diagnostic accuracy of infection and provide support for prognostic evaluation.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
7.Utility of the China-PAR Score in predicting secondary events among patients undergoing percutaneous coronary intervention.
Jianxin LI ; Xueyan ZHAO ; Jingjing XU ; Pei ZHU ; Ying SONG ; Yan CHEN ; Lin JIANG ; Lijian GAO ; Lei SONG ; Yuejin YANG ; Runlin GAO ; Xiangfeng LU ; Jinqing YUAN
Chinese Medical Journal 2025;138(5):598-600
8.Glutamine signaling specifically activates c-Myc and Mcl-1 to facilitate cancer cell proliferation and survival.
Meng WANG ; Fu-Shen GUO ; Dai-Sen HOU ; Hui-Lu ZHANG ; Xiang-Tian CHEN ; Yan-Xin SHEN ; Zi-Fan GUO ; Zhi-Fang ZHENG ; Yu-Peng HU ; Pei-Zhun DU ; Chen-Ji WANG ; Yan LIN ; Yi-Yuan YUAN ; Shi-Min ZHAO ; Wei XU
Protein & Cell 2025;16(11):968-984
Glutamine provides carbon and nitrogen to support the proliferation of cancer cells. However, the precise reason why cancer cells are particularly dependent on glutamine remains unclear. In this study, we report that glutamine modulates the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7) to promote cancer cell proliferation and survival. Specifically, lysine 604 (K604) in the sixth of the 7 substrate-recruiting WD repeats of FBW7 undergoes glutaminylation (Gln-K604) by glutaminyl tRNA synthetase. Gln-K604 inhibits SCFFBW7-mediated degradation of c-Myc and Mcl-1, enhances glutamine utilization, and stimulates nucleotide and DNA biosynthesis through the activation of c-Myc. Additionally, Gln-K604 promotes resistance to apoptosis by activating Mcl-1. In contrast, SIRT1 deglutaminylates Gln-K604, thereby reversing its effects. Cancer cells lacking Gln-K604 exhibit overexpression of c-Myc and Mcl-1 and display resistance to chemotherapy-induced apoptosis. Silencing both c-MYC and MCL-1 in these cells sensitizes them to chemotherapy. These findings indicate that the glutamine-mediated signal via Gln-K604 is a key driver of cancer progression and suggest potential strategies for targeted cancer therapies based on varying Gln-K604 status.
Glutamine/metabolism*
;
Myeloid Cell Leukemia Sequence 1 Protein/genetics*
;
Humans
;
Proto-Oncogene Proteins c-myc/genetics*
;
Cell Proliferation
;
Signal Transduction
;
Neoplasms/pathology*
;
F-Box-WD Repeat-Containing Protein 7/genetics*
;
Cell Survival
;
Cell Line, Tumor
;
Apoptosis
10.Clinical features of hereditary leiomyomatosis and renal cell carcinoma syndrome-associated renal cell carcinoma: a multi-center real-world retrospective study
Yunze XU ; Wen KONG ; Ming CAO ; Guangxi SUN ; Jinge ZHAO ; Songyang LIU ; Zhiling ZHANG ; Liru HE ; Xiaoqun YANG ; Haizhou ZHANG ; Lieyu XU ; Yanfei YU ; Hang WANG ; Honggang QI ; Tianyuan XU ; Bo YANG ; Yichu YUAN ; Dongning CHEN ; Dengqiang LIN ; Fangjian ZHOU ; Qiang WEI ; Wei XUE ; Xin MA ; Pei DONG ; Hao ZENG ; Jin ZHANG
Chinese Journal of Urology 2024;45(3):161-167
Objective:To investigate the clinical features and therapeutic efficacy of patients with hereditary leiomyomatosis and renal cell carcinoma(RCC) syndrome-associated RCC (HLRCC-RCC) in China.Methods:The clinical data of 119 HLRCC-RCC patients with fumarate hydratase (FH) germline mutation confirmed by genetic diagnosis from 15 medical centers nationwide from January 2008 to December 2021 were retrospectively analyzed. Among them, 73 were male and 46 were female. The median age was 38(13, 74) years. The median tumor diameter was 6.5 (1.0, 20.5) cm. There were 38 cases (31.9%) in stage Ⅰ-Ⅱand 81 cases (68.1%) in stage Ⅲ-Ⅳ. In this group, only 11 of 119 HLRCC-RCC patients presented with skin smooth muscle tumors, and 44 of 46 female HLRCC-RCC patients had a history of uterine fibroids. The pathological characteristics, treatment methods, prognosis and survival of the patients were summarized.Results:A total of 86 patients underwent surgical treatment, including 70 cases of radical nephrectomy, 5 cases of partial nephrectomy, and 11 cases of reductive nephrectomy. The other 33 patients with newly diagnosed metastasis underwent renal puncture biopsy. The results of genetic testing showed that 94 patients had FH gene point mutation, 18 had FH gene insertion/deletion mutation, 4 had FH gene splicing mutation, 2 had FH gene large fragment deletion and 1 had FH gene copy number mutation. Immunohistochemical staining showed strong 2-succinocysteine (2-SC) positive and FH negative in 113 patients. A total of 102 patients received systematic treatment, including 44 newly diagnosed patients with metastasis and 58 patients with postoperative metastasis. Among them, 33 patients were treated with tyrosine kinase inhibitor (TKI) combined with immune checkpoint inhibitor (ICI), 8 patients were treated with bevacizumab combined with erlotinib, and 61 patients were treated with TKI monotherapy. Survival analysis showed that the median progression-free survival (PFS) of TKI combined with ICI was 18 (5, 38) months, and the median overall survival (OS) was not reached. The median PFS and OS were 12 (5, 14) months and 30 (10, 32) months in the bevacizumab combined with erlotinib treatment group, respectively. The median PFS and OS were 10 (3, 64) months and 44 (10, 74) months in the TKI monotherapy group, respectively. PFS ( P=0.009) and OS ( P=0.006) in TKI combined with ICI group were better than those in bevacizumab combined with erlotinib group. The median PFS ( P=0.003) and median OS ( P=0.028) in TKI combined with ICI group were better than those in TKI monotherapy group. Conclusions:HLRCC-RCC is rare but has a high degree of malignancy, poor prognosis and familial genetic characteristics. Immunohistochemical staining with strong positive 2-SC and negative FH can provide an important basis for clinical diagnosis. Genetic detection of FH gene germ line mutation can confirm the diagnosis. The preliminary study results confirmed that TKI combined with ICI had a good clinical effect, but it needs to be confirmed by the results of a large sample multi-center randomized controlled clinical study.

Result Analysis
Print
Save
E-mail