1.Determination of asenapine in presence of its inactive metabolites in human plasma by LC-MS/MS
Patel P. NIRAV ; Sanyal MALLIKA ; Sharma NAVEEN ; Patel S. DINESH ; Shrivastav S. PRANAV ; Patel N. BHAVIN
Journal of Pharmaceutical Analysis 2018;8(5):341-347
A highly selective and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay has been described for the determination of asenapine (ASE) in presence of its inactive metabolites N-desmethyl asenapine (DMA) and asenapine-N-glucuronide (ASG). ASE, and ASE 13C-d3, used as in-ternal standard (IS), were extracted from 300 μL human plasma by a simple and precise liquid-liquid extraction procedure using methyl tert-butyl ether. Baseline separation of ASE from its inactive meta-bolites was achieved on Chromolith Performance RP8e(100 mm × 4.6 mm) column using acetonitrile-5.0 mM ammonium acetate-10% formic acid (90:10:0.1, v/v/v) within 4.5 min. Quantitation of ASE was done on a triple quadrupole mass spectrometer equipped with electrospray ionization in the positive mode. The protonated precursor to product ion transitions monitored for ASE and ASE 13C-d3 were m/z 286.1 → 166.0 and m/z 290.0 → 166.1, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) of the method were 0.0025 ng/mL and 0.050 ng/mL respectively in a linear con-centration range of 0.050–20.0 ng/mL for ASE. The intra-batch and inter-batch precision (% CV) and mean relative recovery across quality control levels were ≤5.8% and 87.3%, respectively. Matrix effect, eval-uated as IS-normalized matrix factor, ranged from 1.03 to 1.05. The stability of ASE under different storage conditions was ascertained in presence of the metabolites. The developed method is much simpler, matrix free, rapid and economical compared to the existing methods. The method was suc-cessfully used for a bioequivalence study of asenapine in healthy Indian subjects for the first time.
2.Highly sensitive LC–MS/MS method to estimate doxepin and its metabolite nordoxepin in human plasma for a bioequivalence study
Patel P. NIRAV ; Sanyal MALLIKA ; Sharma NAVEEN ; Patel S. DINESH ; Shrivastav S. PRANAV ; Patel N. BHAVIN
Journal of Pharmaceutical Analysis 2018;8(6):378-385
A selective, sensitive and rugged liquid chromatography–tandem mass spectrometry (LC–MS/MS) assay has been developed for the simultaneous determination of doxepin (Dox) and its pharmacologically active metabolite, nordoxepin (NDox) in human plasma. The analytes and their internal standards (IS) were extracted from 500 μL of human plasma by liquid-liquid extraction using methyl tert-butyl ether. Chromatographic separation was achieved on Hypurity C8 column (100 mm × 4.6 mm, 5 μm) using a mixture of acetonitrile-methanol (95:5, v/v) and 2.0 mM ammonium formate in 93:7 (v/v) ratio. Detection was accomplished by tandem mass spectrometry in the positive ionization and multiple reaction monitoring acquisition mode. The protonated precursor to product ion transitions studied for Dox, NDox, and their corresponding ISs, propranolol and desipramine, were m/z 280.1-107.0, 266.0 -107.0, 260.1-116.1 and 267.1-72.1, respectively. A linear dynamic range of 15.0–3900 pg/mL for Dox and 5.00– 1300 pg/mL for NDox was established with mean correlation coefficient (r2) of 0.9991 and 0.9993, respectively. The extraction recovery ranged from 86.6%–90.4% and 88.0%–99.1% for Dox and NDox, respectively. The intra-batch and inter-batch precision (% CV) across quality control levels was ≤ 8.3% for both the analytes. Stability evaluated under different storage conditions showed no evidence of degradation and the % change in stability samples compared to nominal concentration ranged from 4.7% to 12.3%. The method was successfully applied to a bioequivalence study of 6 mg doxepin hydrochloride orally disintegrating tablet in 41 healthy Indian subjects under fasting and fed conditions.
3.A "healthy apatite" for bone repair.
Best SM ; Patel N ; Porter AE ; Bonfield W
The Medical Journal of Malaysia 2004;59 Suppl B():129-130
Bone is unique in its ability to adapt structure to functional requirements, but as is all too obvious in an ever-ageing population it is susceptible to a number of degenerative diseases. Therefore there is an increasing need for materials for bone replacement. Clearly, the ideal material with which to replace bone, would be bone itself, but the major problem now facing us is that there is an insufficient supply of the natural bone to satisfy the clinical requirements. Hence, there is a need for the development of chemically synthesised bone graft substitutes
*Bone Substitutes
;
*Carbon
;
Femur/pathology
;
*Hydroxyapatites
;
Microscopy, Electron, Transmission
;
Osseointegration/*physiology
;
Sheep
;
*Silicones
;
Structure-Activity Relationship
4.Development of forced degradation and stability indicating studies of drugs-A review
Mn Blessy ; Patel D. Ruchi ; Prajapati N. Prajesh ; Agrawal Y.K.
Journal of Pharmaceutical Analysis 2014;(3):159-165
Forced degradation is a degradation of new drug substance and drug product at conditions more severe than accelerated conditions. It is required to demonstrate specificity of stability indicating methods and also provides an insight into degradation pathways and degradation products of the drug substance and helps in elucidation of the structure of the degradation products. Forced degradation studies show the chemical behavior of the molecule which in turn helps in the development of formulation and package. In addition, the regulatory guidance is very general and does not explain about the performance of forced degradation studies. Thus, this review discusses the current trends in performance of forced degradation studies by providing a strategy for conducting studies on degradation mechanisms and also describes the analytical methods helpful for development of stability indicating method.
5.Birth of a healthy infant after bone marrow-derived cell therapy
Nayana H PATEL ; Yuvraj D JADEJA ; Niket H PATEL ; Molina N PATEL ; Harsha K BHADARKA ; Piyush N CHUDASAMA ; Harmi R THAKKAR
Clinical and Experimental Reproductive Medicine 2021;48(3):268-272
Bone marrow-derived cell (BMDC) therapy has numerous applications as potential biological cells for use in regenerative medicine. Here, we present an original case of endometrial atrophy associated with genital tuberculosis in a woman who achieved a live birth with BMDC. This 27-year-old woman came to our center with endometrial atrophy and primary infertility. She had a past history of genital tuberculosis and amenorrhea. Her husband’s semen quality was normal. The patient was counseled for hysteroscopy due to thin endometrium and advised in vitro fertilization (IVF) with donor eggs in lieu of poor ovarian reserve. Several attempts of IVF with hormone replacement therapy (HRT) were made, but the desired thickness of the endometrium was not achieved. Uterine artery injection of BMDC through interventional radiology was given, followed by HRT for three months, which resulted in improved endometrium. This was subsequently followed by IVF with donor egg. The treatment resulted in the conception and delivery of a 3.1-kg baby boy through lower segment caesarean section with no antenatal, intranatal or postnatal complications. Recently, there has been massive interest in stem cells as a novel treatment method for regenerative medicine, and more specifically for the regeneration of human endometrium disorders like Asherman syndrome and thin endometrium, which was the reason behind using this strategy for treatment.
6.Birth of a healthy infant after bone marrow-derived cell therapy
Nayana H PATEL ; Yuvraj D JADEJA ; Niket H PATEL ; Molina N PATEL ; Harsha K BHADARKA ; Piyush N CHUDASAMA ; Harmi R THAKKAR
Clinical and Experimental Reproductive Medicine 2021;48(3):268-272
Bone marrow-derived cell (BMDC) therapy has numerous applications as potential biological cells for use in regenerative medicine. Here, we present an original case of endometrial atrophy associated with genital tuberculosis in a woman who achieved a live birth with BMDC. This 27-year-old woman came to our center with endometrial atrophy and primary infertility. She had a past history of genital tuberculosis and amenorrhea. Her husband’s semen quality was normal. The patient was counseled for hysteroscopy due to thin endometrium and advised in vitro fertilization (IVF) with donor eggs in lieu of poor ovarian reserve. Several attempts of IVF with hormone replacement therapy (HRT) were made, but the desired thickness of the endometrium was not achieved. Uterine artery injection of BMDC through interventional radiology was given, followed by HRT for three months, which resulted in improved endometrium. This was subsequently followed by IVF with donor egg. The treatment resulted in the conception and delivery of a 3.1-kg baby boy through lower segment caesarean section with no antenatal, intranatal or postnatal complications. Recently, there has been massive interest in stem cells as a novel treatment method for regenerative medicine, and more specifically for the regeneration of human endometrium disorders like Asherman syndrome and thin endometrium, which was the reason behind using this strategy for treatment.
7.Liquid chromatography-tandem mass spectrometry method for simultaneous determination of albendazole and albendazole sulfoxide in human plasma for bioequivalence studies$
Rathod M. Dhiraj ; Patel R. Keyur ; Mistri N. Hiren ; Jangid G. Arvind ; Shrivastav S. Pranav ; Sanyal Mallika
Journal of Pharmaceutical Analysis 2016;6(4):226-234
An improved high performance liquid chromatography–tandem mass spectrometry (LC–MS/MS) method has been developed for sensitive and rapid determination of albendazole (ABZ) and its active metabolite, albendazole sulfoxide (ABZSO), in the positive ionization mode. The method utilized solid phase ex-traction (SPE) for sample preparation of the analytes and their deuterated internal standards (ISs) from 100 mL human plasma. The chromatography was carried out on Hypurity C18 column using acetonitrile-2.0 mM ammonium acetate, pH 5.0 (80:20, v/v) as the mobile phase. The assay exhibited a linear re-sponse over the concentration range of 0.200–50.0 ng/mL for ABZ and 3.00–600 ng/mL for ABZSO. The recoveries of the analytes and ISs ranged from 86.03%–89.66% and 89.85%–98.94%, respectively. Matrix effect, expressed as IS-normalized matrix factors, ranged from 0.985 to 1.042 for the both analytes. The method was successfully applied for two separate studies in healthy subjects using single dose of 400 mg conventional tablets and 400 mg chewable ABZ tablets, respectively.
8.Simultaneous analysis of allopurinol and oxypurinol using a validated liquid chromatography-tandem mass spectrometry method in human plasma
Rathod M. Dhiraj ; Patel R. Keyur ; Mistri N. Hiren ; Jangid G. Arvind ; Shrivastav S. Pranav ; Sanyal Mallika
Journal of Pharmaceutical Analysis 2017;7(1):56-62
The present study describes a simple, reliable and reproducible liquid chromatography–tandem mass spectro-metry method (LC–MS/MS) for the simultaneous determination of allopurinol and its active metabolite, oxypurinol in human plasma for a pharmacokinetic/bioequivalence study. After protein precipitation (PPT) of 100 μL plasma sample with 1.0%formic acid in acetonitrile, the recovery of the analytes and allopurinol-d2 as an internal standard ranged from 85.36% to 91.20%. The analytes were separated on Hypersil Gold (150 mm×4.6 mm, 5 μm) column using 0.1% formic acid-acetonitrile (98:2, v/v) as the mobile phase. Quantification was done using electrospray ionization in the positive mode. The calibration concentration range was established from 60.0 to 6000 ng/mL for allopurinol and 80.0–8000 ng/mL for oxypurinol. Matrix effect in human plasma, expressed as IS-normalized matrix factors ranged from 1.003 to 1.030 for both the analytes. The developed method was found suitable for a clinical study with 300 mg allopurinol tablet formulation in healthy subjects.
9.An improved LC–MS/MS method for the quantification of alverine and para hydroxy alverine in human plasma for a bioequivalence study
Rathod M. Dhiraj ; Patel R. Keyur ; Mistri N. Hiren ; Jangid G. Arvind ; Shrivastav S. Pranav ; Sanyal Mallika
Journal of Pharmaceutical Analysis 2017;7(2):95-102
A highly sensitive and selective high performance liquid chromatography–tandem mass spectrometry method was developed and validated for the quantification of alverine (ALV) and its active metabolite, para hydroxy alverine (PHA), in human plasma. For sample preparation, solid phase extraction of analytes was performed on Phenomenex Strata-X cartridges using alverine-d5 as the internal standard. The analytes were separated on Symmetry Shield RP18 (150 mm×3.9 mm, 5 μm) column with a mobile phase consisting of acetonitrile and 10 mM ammonium formate (65:35, v/v). Detection and quantitation was done by electrospray ionization mass spectrometry in the positive mode using multiple reaction monitoring. The assay method was fully validated over the concentration range of 15.0–15,000 pg/mL for ALV and 30.0–15,000 pg/mL for PHA. The intra-day and inter-day accuracy and precision (%CV) ranged from 94.00%to 96.00%and 0.48%to 4.15%for both the analytes. The mean recovery obtained for ALV and PHA was 80.59% and 81.26%, respectively. Matrix effect, expressed as IS-normalized matrix factor ranged from 0.982 to 1.009 for both the analytes. The application of the method was demonstrated for the specific analysis of ALV and PHA for a bioequivalence study in 52 healthy subjects using 120 mg ALV capsules. The assay reproducibility was also verified by reanalysis of 175 incurred subject samples.
10. Screening of antiproliferative activity mediated through apoptosis pathway in human non-small lung cancer A-549 cells by active compounds present in medicinal plants
Nutan V. BADGUJAR ; Kinnari N. MISTRY ; Dharamshibhai N. RANK ; Chaitanya G. JOSHI
Asian Pacific Journal of Tropical Medicine 2018;11(12):666-675
Objective: To explore the antiproliferative activity and apoptosis in cells caused by active compounds present in plants using different techniques. Methods: We investigated the antiproliferative effects of methanolic extracts from different parts of seven plants on A-549 (lung cancer) cells and primary cell culture (chick embryo fibroblast cells, as normal cells) using MTT assay and the potent plant was fractioned further. All these fractions were screened again for anti-proliferative activity. DNA fragmentation and DAPI staining were used to study apoptosis. Quantitative real-time was used to investigate the expression of apoptotic-related genes. LC-MS and