1.Metabolites and anti-inflammatory activities of Monascus sanguineus.
Ji-Yuan FAN ; Bing-Yu LIU ; Hui-Ming HUA ; You-Cai HU
China Journal of Chinese Materia Medica 2025;50(13):3699-3735
A variety of chromatographic techniques, including silica gel, ODS, Sephadex LH-20, and HPLC, were employed to isolate and purify the fermentation products of rice with Monascus sanguineus. A total of 38 compounds were isolated, and their structures were identified by UV, IR, NMR, MS, calculated ECD, and comparison with literature data. Compounds 1-4 were identified as new natural products, and other compounds were isolated from this fungus for the first time. A RAW264.7 macrophage model of lipopolysaccharide(LPS)-induced inflammation was used to evaluate the anti-inflammatory activities of all the compounds. The results showed that compound 6 exhibited a certain inhibitory effect on the production of nitric oxide in LPS-induced RAW264.7 cells, with an inhibition rate of 53.08%.
Monascus/chemistry*
;
Mice
;
Animals
;
Anti-Inflammatory Agents/isolation & purification*
;
RAW 264.7 Cells
;
Macrophages/immunology*
;
Nitric Oxide/immunology*
;
Oryza/metabolism*
;
Fermentation
2.Creation of new glabrous and salt-tolerant rice germplasm along the Yellow River by CRISPR-Cas9-mediated editing of OsSPL10.
Qiangbing XUAN ; Huigang ZHOU ; Minglan ZHU ; Junjie WANG ; Weihong LIANG
Chinese Journal of Biotechnology 2025;41(2):706-718
The OsSPL10 gene has previously been reported to positively regulate trichome development and negatively regulate salt and drought stress tolerance in rice. However, it is not clear whether this gene can be used for gene editing to create new germplasm of glabrous leaf and salt-tolerant rice. In this study, we created six rice mutants by CRISPR/Cas9-mediated editing of OsSPL10 from 'Xinfeng 2', 'Xinkedao 31', and 'Xindao 25', the main rice cultivars along the Yellow River. Visual observation and scanning electron microscopy verified that the mutants lacked trichomes on the leaves and glumes, and the expression of glabrous marker genes OsHL6, OsGL6, and OsWOX3B in mutants was down-regulated compared with that in the wild type. The net photosynthetic rate, stomatal conductance, and transpiration rate of flag leaves in the mutants were significantly higher than those in the wild type. In addition, the survival rates of the mutants were much higher than that of the wild type after 7 days of treatment with 200 mmol/L NaCl. The results of quantitative real-time polymerase chain reaction (qRT-PCR) further verified that compared with the wild type, the mutants demonstrated down-regulated expression of the salt stress-related gene OsGASR1 and up-regulated expression of OsNHX2 and OsIDS1. Statistical analysis of agronomic traits showed that the mutants had increased plant height and no significant changes in yield-related traits compared with the wild type. The six spl10 mutants created in this study not only had glabrous leaves and glumes but also demonstrated enhanced tolerance to salt stress, serving as new germplasm resources for directional breeding of rice along the Yellow River.
Oryza/physiology*
;
CRISPR-Cas Systems/genetics*
;
Salt Tolerance/genetics*
;
Gene Editing/methods*
;
Plant Proteins/genetics*
;
Rivers
;
Plant Leaves/genetics*
;
Mutation
;
Plants, Genetically Modified/genetics*
;
China
3.Identification of rice htd1 allelic mutant and its regulatory role in grain size.
Yuqi YANG ; Zhining ZHANG ; Jun LIU ; Luyao TANG ; Yiting WEI ; Wen NONG ; Lu YIN ; Sanfeng LI ; Penggen DUAN ; Yuexing WANG ; Yuchun RAO
Chinese Journal of Biotechnology 2025;41(7):2789-2802
Rice is the world's largest food crop, and its yield and quality are directly related to food security and human health. Grain size, as one of the important factors determining the rice yield, has been widely concerned by breeders and researchers for a long time. To decipher the regulatory mechanism of rice grain size, we obtained a multi-tiller, dwarf, and small-grain mutant htd1 by ethyl methanesulfonate (EMS) mutation from the Japonica rice cultivar 'Zhonghua 11' ('ZH11'). Genetic analysis indicated that the phenotype of htd1 was controlled by a single recessive gene. Using the mutation site map (Mutmap) method, we identified the candidate gene OsHTD1, which encoded a carotenoid cleavage dioxygenase involved in the biosynthesis of strigolactone (SL). The SL content in htd1 was significantly lower than that in 'ZH11'. Cytological analysis showed that the grain size of the mutant decreased due to the reductions in the length and width of glume cells. The function of htd1 was further verified by the CRISPR/cas9 gene editing technology. The plants with the gene knockout exhibited similar grain size to the mutant. In addition, gene expression analysis showed that the expression levels of multiple grain size-related genes in the mutant changed significantly, suggesting that HTD1 may interact with other genes regulating grain size. This study provides a new theoretical basis for research on the regulatory mechanism of rice grain size and potential genetic resources for breeding the rice cultivars with high yields.
Oryza/growth & development*
;
Mutation
;
Edible Grain/growth & development*
;
Alleles
;
Plant Proteins/genetics*
;
Dioxygenases/genetics*
;
Lactones/metabolism*
;
Gene Expression Regulation, Plant
;
Genes, Plant
;
Gene Editing
;
CRISPR-Cas Systems
;
Phenotype
4.Map-based cloning and abiotic stress response analysis of rust spotted leaf 1 in rice.
Jun LIU ; Xiaoyan LIU ; Yiyun GE ; Yiting WEI ; Kangjie LING ; Luyao TANG ; Jiangmin XU ; Yuchun RAO
Chinese Journal of Biotechnology 2025;41(7):2871-2884
Rice (Oryza sativa L.) is an important food crop. The appearance of lesion mimics in rice leads to phytohormone disorders, which affects rice adaptation to environmental stresses and ultimately reduces the yield and quality. To explore whether the changes in the adaptability of rice lesion-mimic mutants to stressful environments are caused by the disorder of phytohormone metabolism in plants. In this study, we screened an ethyl methane sulfonate-treated population of the japonica cultivar 'Taipei 309' for a mutant with rust-like spots on leaves at the early tillering stage and brown-red spots at maturity and named it rsl1 (rust spotted leaf 1). Compared with the wild type, rsl1 showed decreases in plant height, panicle length, primary branch number, secondary branch number, filled grains per panicle, seed-setting rate, and 1 000-grain weight, and an increase in number of effective panicles. Genetic analysis indicated that rsl1 was controlled by a single recessive nuclear gene. RSL1 was localized between two molecular markers, B7-7 and B7-9, on rice chromosome 7 by map-based cloning. PCR sequencing of the annotated genes in this interval revealed a mutation of C1683A on the eighth exon of SPL5 (LOC_Os07g10390) in rsl1, which resulted in premature termination of protein translation. Exogenous phytohormone treatments showed that rsl1 was less sensitive to salicylic acid (SA), abscisic acid (ABA), and indo-3-acetic acid (IAA) and more sensitive to methyl jasmonate (MeJA) and gibberellin acid (GA) than the wild type. In addition, the survival rate of rsl1 was lower than that of the wild type under salt, alkali, drought, and high temperature stresses, and it was higher than that of the wild type under cold stress. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that RSL1 was involved in the regulation of ABA, SA, MeJA, IAA, and GA-related genes under abiotic stresses. The present study showed that the RSL1 mutation led to the appearance of lesion mimics and affected the growth, development, and stress resistance of rsl1 under abiotic stresses. The study of the functional mechanism of this gene can provide theoretical guidance for the research on rice stress resistance.
Oryza/microbiology*
;
Stress, Physiological/genetics*
;
Plant Diseases/genetics*
;
Cloning, Molecular
;
Chromosome Mapping
;
Plant Growth Regulators/metabolism*
;
Plant Proteins/genetics*
;
Mutation
;
Cyclopentanes
;
Genes, Plant
;
Plant Leaves/genetics*
;
Oxylipins
5.Application and prospects of synthetic biology in the genetic improvement of rice.
Luyao TANG ; Yiting WEI ; Yuqing XU ; Yuexing WANG ; Yuchun RAO
Chinese Journal of Biotechnology 2025;41(10):3840-3862
Synthetic biology, recognized as one of the most revolutionary interdisciplinary fields in the 21st century, has established innovative strategies for the genetic improvement of rice through the integration of multidisciplinary technologies including genome editing, genetic circuit design, metabolic engineering, and artificial intelligence. This review systematically summarizes recent research advancements and breakthrough achievements in the application of synthetic biology in the genetic improvement of rice, focusing on three critical domains: yield improvement, nutritional quality fortification, and reinforcement of disease resistance and abiotic stress tolerance. It elucidates that synthetic biology enables precise genomic and metabolic pathway engineering through modular, standard, and systematic approaches, effectively overcoming the limitations of conventional breeding methods characterized by prolonged cycles and restricted trait modification capabilities. The implementation of synthetic biology has facilitated synergistic improvement of multi-traits, thereby providing critical technical references for developing elite rice cultivars with superior productivity and nutritional value. These technological breakthroughs hold significant implications for ensuring global food security and promoting green and sustainable development of agriculture.
Oryza/growth & development*
;
Synthetic Biology/methods*
;
Metabolic Engineering
;
Plant Breeding/methods*
;
Gene Editing
;
Genetic Engineering/methods*
;
Plants, Genetically Modified/genetics*
;
Disease Resistance/genetics*
6.Quantitative trait locus(QTL) mapping and candidate gene expression analysis of cold tolerance of rice at plumule and seedling stages.
Beibei ZHAO ; Zhining ZHANG ; Yanan JIANG ; Chengxiang HU ; Luyi ZHANG ; Jun LIU ; Jiangmin XU ; Yuexing WANG ; Yuchun RAO
Chinese Journal of Biotechnology 2025;41(10):3939-3955
Rice (Oryza sativa L.), as a thermophilic crop, is highly susceptible to cold stress during its growth process. Chilling injury at the plumule stage and seedling stage often affects the morphological development and leads to yield reduction of rice. The exploration and utilization of cold tolerance genes are among the most direct and effective approaches to address cold stress in rice. To identify quantitative trait loci (QTLs) associated with cold tolerance at plumule and seedling stages, in this study, we measured the seedling rates and survived seedling rates of the indica rice cultivar 'HZ', the japonica cultivar 'Nekken2', and their 120 recombinant inbred lines (RILs) under cold stress. A previously constructed high-density genetic linkage map was used for the mapping of the QTLs conferring cold tolerance at the plumule and seedling stages. A total of 4 QTLs for plumule-stage cold tolerance and 9 QTLs for seedling-stage cold tolerance were detected, with the maximum limit of detection reaching 5.20. Notably, a genetically overlapping QTL for both plumule and seedling stages was identified on chromosome 8, spanning a physical interval of 24 432 953-25 295 129 bp. Candidate genes within the detected QTL intervals were screened, and quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to analyze the gene expression during the plumule and seedling stages. The results revealed that LOC_Os03g06570, LOC_Os03g07100, LOC_Os06g08280, LOC_Os08g38440, LOC_Os08g39100, and LOC_Os08g39540 exhibited significantly differential expression between the parental lines. These genes were either significantly downregulated or upregulated under cold stress. Among them, the first three gene (LOC_Os03g06570, LOC_Os03g07100, and LOC_Os06g08280) were hypothesized to be key candidates regulating the cold tolerance of rice seedlings, while the latter three genes (LOC_Os08g38440, LOC_Os08g39100, and LOC_Os08g39540) were identified as comprehensive regulators of cold tolerance during both plumule and seedling stages. These findings lay a foundation for the fine mapping and cloning of cold tolerance genes at the plumule and seedling stages, providing valuable insights for breeding cold-tolerant rice varieties.
Quantitative Trait Loci/genetics*
;
Oryza/growth & development*
;
Seedlings/growth & development*
;
Cold Temperature
;
Chromosome Mapping
;
Gene Expression Regulation, Plant
7.Mapping of QTL associated with rice cooking quality and candidate gene analysis.
Qiaona LE ; Ziwen HUANG ; Ruohui DAI ; Sanfeng LI ; Mengjia LI ; Yuan FANG ; Yuexing WANG ; Yuchun RAO
Chinese Journal of Biotechnology 2024;40(1):122-136
Excavating the quantitative trait locus (QTL) associated with rice cooking quality, analyzing candidate genes, and improving cooking quality-associated traits of rice varieties by genetic breeding can effectively improve the taste of rice. In this study, we used the indica rice HZ, the japonica rice Nekken2 and 120 recombinant inbred lines (RILs) populations constructed from them as experimental materials to measure the gelatinization temperature (GT), gel consistency (GC) and amylose content (AC) of rice at the maturity stage. We combined the high-density genetic map for QTL mapping. A total of 26 QTLs associated with rice cooking quality (1 QTL associated with GT, 13 QTLs associated with GC, and 12 QTLs associated with AC) were detected, among which the highest likelihood of odd (LOD) value reached 30.24. The expression levels of candidate genes in the localization interval were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), and it was found that the expression levels of six genes were significantly different from that in parents. It was speculated that the high expression of LOC_Os04g20270 and LOC_Os11g40100 may greatly increase the GC of rice, while the high expression of LOC_Os01g04920 and LOC_Os02g17500 and the low expression of LOC_Os03g02650 and LOC_Os05g25840 may reduce the AC. The results lay a molecular foundation for the cultivation of new high-quality rice varieties, and provide important genetic resources for revealing the molecular regulation mechanism of rice cooking quality.
Quantitative Trait Loci
;
Oryza/genetics*
;
Plant Breeding
;
Cooking
;
Genetic Association Studies
8.Differences in chemical components in processing of dried ginger-steamed, sand-fried, and rice swill water-bleached Aconiti Lateralis Radix Praeparata pieces in "Jianchang" faction based on UPLC-MS/MS.
Ying ZHOU ; Ling-Yun ZHONG ; Hong-Bing LUO ; Si-Min ZHONG ; Bin LIU ; Qi DENG ; Fu-Yu XU
China Journal of Chinese Materia Medica 2023;48(23):6387-6395
This study compared the changes in chemical components during the processing of different types of Aconiti Lateralis Radix Praeparata(ALRP) in "Jianchang" faction, i.e., dried ginger-steamed ALRP pieces(Yin-FP), sand-fried ALRP pieces(Yang-FP), and rice swill water-bleached ALRP pieces(DFP), and provided a scientific basis for the mechanism in toxicity reduction and efficacy enhancement from a compositional perspective. Samples were collected during the processing of the three types of ALRP pieces, yielding raw ALRP pieces, water-bleached Yin-FP, ginger juice-moistened Yin-FP, steamed Yin-FP, water-bleached Yang-FP, sand-fried Yang-FP, water-bleached DFP, rice swill water-bleached DFP, and roasted DFP. Aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine, benzoylhypaconine, aconine, mesaconine, hypaconine, salsolinol, fuziline, and higenamine in the extracts were determined by UPLC-MS/MS, and then content analysis and cluster heatmap analysis were performed on 11 sets of samples. During the processing of the three types of ALRP pieces, bleaching significantly reduced the content of 12 alkaloids; steaming, stir-frying, and roasting significantly reduced the content of diester-type alkaloids(aconitine, mesaconitine, and hypaconitine) and significantly increased the content of monoester-type alkaloids(benzoylaconine, benzoylmesaconine, and benzoylhypaconine) and aminoalcohol-type alkaloids(aconine, mesaconine, and hypaconine). During the processing of Yin-FP, the diester-type alkaloids continuously decreased, while the monoester-type and aminoalcohol-type alkaloids showed an initial decrease followed by an increase. During the processing of Yin-FP, Yang-FP, and DFP, the diester-type alkaloids continuously decreased, while the monoester-type and aminoalcohol-type alkaloids showed an initial decrease followed by an increase. Steamed Yin-FP showed a higher increase in content than fried Yang-FP and roasted DFP. Comprehensive analysis of content differences in toxic and therapeutic components in three ALRP pieces suggests that the distinctive processing methods in "Jianchang" faction can indeed achieve detoxification and efficacy enhancement on ALRP. This study provides references for understanding the mechanisms of action of the three processing methods.
Aconitine/analysis*
;
Tandem Mass Spectrometry
;
Zingiber officinale
;
Oryza
;
Sand
;
Liquid Chromatography-Mass Spectrometry
;
Chromatography, Liquid
;
Drugs, Chinese Herbal/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Alkaloids/analysis*
;
Steam
9.Effect of VIT1/VIT2 overexpression on Fe and Cd accumulation in rice endosperm.
Yiqi HE ; Dong LIU ; Yujiao SHI ; Bao GUO ; Lin ZHOU ; Jinsong LUO ; Zhenhua ZHANG
Chinese Journal of Biotechnology 2023;39(2):713-723
Iron (Fe) deficiency and excess cadmium (Cd) in rice grain are important problems to be solved in agricultural production. Previous studies have shown that OsVIT1 and OsVIT2 are vacuolar iron transporters. In this study, wild-type ZH11 was selected as the background material and OsVIT1 and OsVIT2 were overexpressed in endosperm by using endosperm specific promoter Glb-1. Field experiments were conducted to study the effect of OsVIT1 and OsVIT2 overexpression on Fe and Cd accumulation in different parts of rice. The results showed that OsVIT1 overexpression in endosperm significantly reduced Fe content in grain by about 50%, while significantly increased zinc (Zn) and copper (Cu) contents in straw and Cu content in grain. OsVIT2 overexpression in endosperm significantly decreased Fe and Cd contents in grain by about 50%, and significantly increased Fe content in straw by 45%-120%. Overexpression of OsVIT1 and OsVIT2 in endosperm did not affect the agronomic traits of rice. In conclusion, OsVIT1 and OsVIT2 overexpression in endosperm reduced Fe accumulation in rice grain, which did not achieve the expected effect. OsVIT2 overexpression in endosperm also decreased Cd accumulation in grain and increased Fe accumulation in straw, which provided reference for iron biofortification and cadmium reduction in rice.
Cadmium
;
Endosperm/chemistry*
;
Oryza/genetics*
;
Iron
;
Zinc
;
Edible Grain
;
Soil Pollutants
10.Antagonistic activity and application of Bacillus velezensis strain Bv-303 against rice bacterial-blight disease caused by Xanthomonas oryzae pv. oryzae.
Xia LIU ; Zhexiao LU ; Zicheng MA ; Tingting YU ; Haotian CHEN ; Lu WANG ; Xifeng CHEN
Chinese Journal of Biotechnology 2023;39(2):741-754
In this study, a new Bacillus velezensis strain Bv-303 was identified and its biocontrol effect against rice bacterial-blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) was investigated. Cell-free supernatant (CFS) of strain Bv-303 under different growth conditions were prepared to test the antagonistic activity and stability against Xoo by the Oxford-cup method in vitro. The antibacterial effect of strain Bv-303 to BB disease in rice were further analyzed in vivo by spraying the cell-culture broth (CCB), CFS and cell-suspension water (CSW), respectively, on the rice leaves inoculated with Xoo. Additionally, rice seeds germination rate and seedling growth under the strain Bv-303 CCB treatment were tested. The results showed that the strain Bv-303 CFS significantly inhibited Xoo growth by 85.7%‒88.0% in vitro, which was also stable under extreme environment conditions such as heat, acid, alkali and ultraviolet light. As tested in vivo, spraying the CCB, CFS or CSW of strain Bv-303 on the Xoo-infected leaves enhanced rice plant resistance to BB disease, with CCB showing the highest increase (62.7%) in disease-resistance. Notably, CCB does not have negative effects on rice seed germination and seedling growth. Therefore, strain Bv-303 has great potential for biocontrol of the rice BB disease.
Oryza
;
Fatigue Syndrome, Chronic
;
Bacillus
;
Xanthomonas
;
Plant Diseases/microbiology*

Result Analysis
Print
Save
E-mail