1.Enhancing mucosal immunity in mice by recombinant adenovirus expressing major epitopes of porcine circovirus-2 capsid protein delivered with cytosine-phosphate-guanosine oligodeoxynucleotides.
Hong Tao CHANG ; Xiu Yuan HE ; Yu Feng LIU ; Lu CHEN ; Quan Hai GUO ; Qiu Ying YU ; Jun ZHAO ; Xin Wei WANG ; Xia YANG ; Chuan Qing WANG
Journal of Veterinary Science 2014;15(3):399-407
A recombinant replication-defective adenovirus expressing the major epitopes of porcine circovirus-2 (PCV-2) capsid protein (rAd/Cap/518) was previously constructed and shown to induce mucosal immunity in mice following intranasal delivery. In the present study, immune responses induced by intranasal immunization with a combination of rAd/Cap/518 and cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODN) were evaluated in mice. The levels of PCV-2-specific IgG in serum and IgA in saliva, lung, and intestinal fluids were significantly higher in the group immunized with rAd/Cap/518 and CpG ODN than animals immunized with rAd/Cap/518 alone. The frequencies of IL-2-secreting CD4+ T cells and IFN-gamma-producing CD8+ T cells were significantly higher in the combined immunization group than mice immunized with rAd/Cap/518 alone. The frequencies of CD3+, CD3+CD4+CD8-, and CD3+CD4-CD8+ T cells in the combined immunization group were similar to that treated with CpG ODN alone, but significantly higher than mice that did not receive CpG ODN. PCV-2 load after challenge in the combined immunization group was significantly lower than that in the phosphate-buffered saline placebo group and approximately 7-fold lower in the group treated with CpG ODN alone. These results indicate that rAd/Cap/518 combined with CpG ODN can enhance systemic and local mucosal immunity in mice, and represent a promising synergetic mucosal vaccine against PCV-2.
Adenoviridae/genetics/immunology
;
Administration, Intranasal
;
Animals
;
Capsid Proteins/*genetics/immunology
;
Circoviridae Infections/*immunology
;
Circovirus/*genetics/immunology
;
Epitopes/genetics/immunology
;
Female
;
Immunity, Mucosal/immunology
;
Immunoglobulin A/blood/immunology
;
Immunoglobulin G/blood/immunology
;
Mice
;
Mice, Inbred BALB C
;
Oligodeoxyribonucleotides/genetics
;
Vaccines, Synthetic/genetics/immunology
;
Viral Vaccines/administration & dosage/*genetics/immunology
2.Recent progress of the aptamer-based antiviral drugs.
Yao ZHU ; Ying-Hui LÜ ; Hui-Yong YANG ; Jun-Sheng LIN ; Qi-Zhao WANG
Acta Pharmaceutica Sinica 2013;48(4):447-456
Aptamers are capable of binding a wide range of biomolecular targets with high affinity and specificity. It has been widely developed for diagnostic and therapeutic purposes. Because of unique three dimensional structures and cell-membrane penetration, aptamers inhibit virus infection not only through binding specific target, such as the viral envelope, genomic site, enzyme, or other viral components, but also can be connected to each other or with siRNA jointly achieve antiviral activity. Taking human immunodeficiency virus and hepatitis C virus as examples, this paper reviewed the effects and mechanisms of aptamers on disturbing viral infection and replication steps. It may provide an insight to the development of aptamer-based new antiviral drugs.
Antiviral Agents
;
pharmacology
;
Aptamers, Nucleotide
;
pharmacology
;
therapeutic use
;
Genome, Viral
;
drug effects
;
HIV
;
drug effects
;
HIV Reverse Transcriptase
;
metabolism
;
Hepacivirus
;
drug effects
;
genetics
;
Humans
;
Macular Degeneration
;
drug therapy
;
Neoplasms
;
drug therapy
;
Oligodeoxyribonucleotides
;
therapeutic use
;
RNA, Small Interfering
;
pharmacology
;
SELEX Aptamer Technique
;
Viral Envelope Proteins
;
metabolism
;
Virus Replication
;
drug effects
3.High expression of HPV16L2N120E7E6 fusion protein in E. coli and its inhibitory effect on tumor growth in mice.
Li ZHAO ; Meng GAO ; Jian GAO ; Jiao REN ; Hui ZHANG ; Hou-wen TIAN ; Wen-jie TAN ; Li RUAN
Chinese Journal of Oncology 2012;34(11):810-815
OBJECTIVETo investigate the high expression of HPV16L2N120E7E6 fusion protein by prokaryotic expression system, and evaluate its immunogenicity and antitumor efficacy in vaccinated mice.
METHODSThe HPV16L2N120E7E6 fusion gene, its codons were optimized to increase the expression of the protein, was constructed by overlap extension PCR and inserted into prokaryotic expression vector pET9a. Then the fusion protein was expressed by inducing with IPTG in E. coli strain BL21 (DE3) harboring with plasmid pETL2N120E7E6, and further detected by SDS-PAGE and Western-blot. Finally, the humoral and cellular immune responses were measured by ELISA and ELISPOT, respectively, in vaccinated mice with the purified HPV16L2N120E7E6 fusion protein, and the antitumor efficacy was assessed in mice using the TC-1 tumor challenge model.
RESULTSThe codon-optimized HPV16L2N120E7E6 fusion gene was highly expressed in E. coli strain BL21 (DE3) harboring with plasmid pETL2N120E7E6, and the amount of fusion protein was nearly 48.6% of the total bacterial protein. The purified fusion protein could induce high titer of specific antibody against L2, E7 and E6 in vaccinated mice. When accompanied with the adjuvant CpG, the fusion protein was able to elicit strong and moderate cellular immune responses in vaccinated mice against peptide HPV16E7(49-57) and peptide pools of HPV16E6, respectively. Furthermore, the tumor therapeutic experiment showed that HPV16L2N120E7E6 + CpG could prevent the tumor formation in 80.0% (8/10) vaccinated mice.
CONCLUSIONSThe data of this study suggest that HPV16L2N120E7E6 fusion protein could be a promising candidate vaccine for treatment of chronic HPV16 infection and post-operative adjuvant therapy for cervical cancer.
Adjuvants, Immunologic ; pharmacology ; Animals ; Cancer Vaccines ; immunology ; therapeutic use ; Capsid Proteins ; genetics ; immunology ; metabolism ; Cell Line, Tumor ; Cell Proliferation ; Codon ; Escherichia coli ; immunology ; metabolism ; Female ; Humans ; Immunization ; methods ; Immunotherapy ; methods ; Mice ; Mice, Inbred C57BL ; Neoplasm Transplantation ; Oligodeoxyribonucleotides ; immunology ; Oncogene Proteins, Viral ; genetics ; immunology ; metabolism ; Papillomavirus E7 Proteins ; genetics ; immunology ; metabolism ; Papillomavirus Vaccines ; immunology ; therapeutic use ; Plasmids ; Recombinant Fusion Proteins ; genetics ; immunology ; metabolism ; Repressor Proteins ; genetics ; immunology ; metabolism
4.Mitochondrial mechanisms of antisense oligodeoxynucleotide Stat3 induced apoptosis in laryngeal carcinoma cell.
Haili LÜ ; Quihang ZHANG ; Bo YAN
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2012;26(7):316-318
OBJECTIVE:
To investigate the changes of mitochondrion by transferring antisense oligodeoxynucleotide Stat3 into laryngeal carcinoma Hep-2 cell, for elucidating the mechanism of laryngeal carcinoma Hep-2 cell apoptosis, for developing more effective treatment for laryngeal cancer.
METHOD:
The designed Stat3 ASODN was transferred into laryngeal carcinoma Hep-2 cell by lipofection. Mitochondrion membrane potential, VDAC and Cyt-c were detected for determining the changes of mitochondrion.
RESULT:
MMP was fell, Cyt-c and VDAC were increased with the heighten concentration of ASODN.
CONCLUSION
Mitochondria approach play an important role in the apoptosis mechanism of human Hep-2 cell by Stat3. This research elucidated the regulating mechanism of Hep-2 cell proliferation by Stat3, provided a new research focus for clinical therapy.
Apoptosis
;
Cell Proliferation
;
Cytochromes c
;
metabolism
;
Hep G2 Cells
;
Humans
;
Laryngeal Neoplasms
;
genetics
;
metabolism
;
pathology
;
Membrane Potential, Mitochondrial
;
Mitochondria
;
metabolism
;
Oligodeoxyribonucleotides, Antisense
;
genetics
;
STAT3 Transcription Factor
;
genetics
;
Transfection
;
Voltage-Dependent Anion Channels
;
metabolism
5.Modulation of Toll-like signal path of allergic asthma by CpG-ODNs from Bordetella pertussis.
Bao-Yuan ZHANG ; Shen CHI ; Yun SUN
Acta Pharmaceutica Sinica 2011;46(3):285-292
This study focused on prevention and treatment of acute and chronic asthma by oligonucleotides containing unmethylated CpG motifs (CpG-ODNs). Acute and chronic asthma models of mice were made by sensitizing and inhaling ovalbumin (OVA); The number of white blood cells (WBC) and eosnophils (EOS) in bronchoalveolar lavage fluid (BALF) was counted and the concentration of cytokines and vascular endothelial growth factor (VEGF) was examined in BALF by ELISA kit. After that, TLR-9 mRNA was detected in mice spleen cells by reverse transcription polymerase chain reaction (RT-PCR) and TLR-9 protein was determined in mice lung tissues by Western blotting. Compared with acute asthma models of mice, WBC in BALF decreased obviously in the groups of Bordetella pertussis, CpG-ODNs and seq A to seq I which were administrated by both of intragastric (ig) and intraperitoneal (ip) injection group, EOS decreased obviously in Bordetella pertussis, CpG+ and seq A to seq D ig groups, and in all ip administrating groups, although it was not effective in the groups of seq E to seq I. In chronic asthma models of mice, IFN-gamma increased ((1) control: 176.45 +/- 23.46 pg x mL(-1); (2) model: 174.11 +/- 22.71 pg x mL(-1); (3) CpG+ ip: 220.56 +/- 15.42 pg x mL(-1); (4) seq A ip: 225.23 +/- 21.60 pg x mL(-1)) and IL-4 decreased obviously (1) control: 66.91 +/- 5.81 pg x mL(-1); (2) model: 81.02 +/- 11.24 pg x mL(-1); (3) CpG+ ip: 63.99 +/- 6.09 pg x mL(-1); (4) seq A ip: 62.75 +/- 10.03 pg x mL(-1)) in the BALF of CpG+ and seq A ip group, although VEGF was not changed in this research. And also, TLR-9 mRNA in spleen cells (TLR-9/GAPDH: (1) control: 0.62 +/- 0.13; (2) model: 0.66 +/- 0.17; (3) CpG+ ip: 1.46 +/- 0.26; (4) seq A ip: 1.42 +/- 0.34) and TLR-9 protein in lung tissues (TLR-9/beta-actin: (1) control: 0.63 +/- 0.16; (2) model: 0.61 +/- 0.07; (3) CpG+ ip: 1.15 +/- 0.25; (4) seq A ip: 1.03 +/- 0.29) both increased in ip groups, but the change was not significant in ig group. The study confirms that CpG-ODNs and seq A could inhibit airway inflammation remarkably, this mechanism might be related with regulating Th1/Th2 balance and controlling the expression of TLR-9.
Adjuvants, Immunologic
;
isolation & purification
;
pharmacology
;
Animals
;
Asthma
;
chemically induced
;
metabolism
;
pathology
;
Bordetella pertussis
;
Bronchoalveolar Lavage Fluid
;
Eosinophils
;
drug effects
;
Female
;
Interferon-gamma
;
metabolism
;
Interleukin-4
;
metabolism
;
Leukocyte Count
;
Leukocytes
;
drug effects
;
Lung
;
metabolism
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred ICR
;
Oligodeoxyribonucleotides
;
isolation & purification
;
pharmacology
;
Ovalbumin
;
RNA, Messenger
;
metabolism
;
Random Allocation
;
Signal Transduction
;
drug effects
;
Spleen
;
metabolism
;
Th1-Th2 Balance
;
Toll-Like Receptor 9
;
genetics
;
metabolism
;
Vascular Endothelial Growth Factor A
;
metabolism
6.Knock-down of apollon gene by antisense oligodeoxynucleotide inhibits the proliferation of Lovo cells and enhances chemo-sensitivity.
Jin-hua HE ; Xiao-ying ZHANG ; Feng-yun WU ; Xiao-li LIAO ; Wei WANG ; Jian-wei JIANG
Acta Pharmaceutica Sinica 2011;46(2):138-145
In this study, the effects of apollon antisense oligodeoxynucleotide (ASODN) on the proliferation and apoptosis of human Lovo cells in vitro were investigated. Apollon ASODN was incubated with human colorectal Lovo cells for 48 h, the proliferation inhibition and the clone forming rates were detected by WST method and clone formation assay, respectively. The expression of apollon mRNA was analyzed by real time fluorescent quantitative reverse transcription polymerase chain reaction. The percentage of apoptotic cells and cell cycle distribution were determined by flow cytometry. The morphology of apoptotic cells was examined by fluorescence microscope. Lovo cells incubated with apollon ASODN combined with 5-fluorouracil (5-FU), cisplatin (DDP) or epirubicin (EPI) of different concentrations, cell proliferation inhibition rates were detected with WST method and IC50 was calculated. It was found that ASODN targeting apollon gene could all suppress the growth of Lovo cells and induce apoptosis of these cells significantly (P < 0.05). After Lovo cells treated with apollon ASODN for 48 hours, the expression of the apollon mRNA level was suppressed significantly. And a marked concentration-dependent decline of cell proliferation and clone forming, increasing of cell apoptosis levels were observed. The percentage of G0/G1 phage cells was abated and that of S phage cells was increased and the Lovo cells arrested at S phage of the cell cycle detected with flow cytometry. Many Lovo cells stained with Hoechst 33258 exhibited apoptotic morphology such as cell shrinkage, nuclear condensation and nuclear fragmentation. Cell proliferation inhibition was detected and their chemo-therapeutic effects of 5-FU, DDP and EPI on Lovo cells combined with apollon ASODN (0.08 micromol x L(-1)) were enhanced independently compared with single 5-FU, DDP and EPI groups, and the sensitivity enhanced about 2.58, 4.47, and 5.33 times respectively. It can be concluded that ASODN targeting apollon can suppress the expression of apollon mRNA, and inhibit the proliferation, induce apoptosis, arrest cell cycle at S phase of colorectal cancer Lovo cells in vitro and enhance the chemo-sensitivity to 5-FU, DDP and EPI.
Antineoplastic Agents
;
pharmacology
;
Apoptosis
;
drug effects
;
Cell Cycle
;
drug effects
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Cisplatin
;
pharmacology
;
Colonic Neoplasms
;
metabolism
;
pathology
;
Epirubicin
;
pharmacology
;
Fluorouracil
;
pharmacology
;
Gene Knockdown Techniques
;
Humans
;
Inhibitor of Apoptosis Proteins
;
genetics
;
metabolism
;
Inhibitory Concentration 50
;
Oligodeoxyribonucleotides, Antisense
;
genetics
;
RNA, Messenger
;
metabolism
;
Sensitivity and Specificity
;
Transfection
7.Connection of magnetic antisense probe with SK-Br-3 oncocyte mRNA nucleotide detected by high resolution atomic force microscope.
Shude TAN ; Yu OUYANG ; Xinyou LI ; Ming WEN ; Shaolin LI
Journal of Biomedical Engineering 2011;28(3):442-445
The present paper is aimed to detect superparamagnetic iron oxide labeled c-erbB2 oncogene antisense oligonucleotide probe (magnetic antisense probe) connected with SK-Br-3 oncocyte mRNA nucleotide by high resolution atomic force microscope (AFM). We transfected SK-Br-3 oncocyte with magnetic antisense probe, then observed the cells by AFM with high resolution and detected protein expression and magnetic resonance imagine (MRI). The high resolution AFM clearly showed the connection of the oligonucleotide remote end of magnetic antisense probe with the mRNA nucleotide of oncocyte. The expression of e-erbB2 protein in SK-Br3 cells were highly inhibited by using magnetic antisense probe. We then obtained the lowest signal to noise ratio (SNR) of SK-Br-3 oncocyte transfected with magnetic antisense probe by MRI (P<0.05). These experiments demonstrated that the high resolution AFM could be used to show the binding of magnetic antisense probe and SK-Br-3 mRNA of tumor cell nuclear.
Breast Neoplasms
;
metabolism
;
pathology
;
Cell Line, Tumor
;
DNA, Antisense
;
chemistry
;
genetics
;
Female
;
Ferric Compounds
;
chemistry
;
Genes, erbB-2
;
genetics
;
Humans
;
Magnetics
;
Microscopy, Atomic Force
;
methods
;
Molecular Probe Techniques
;
Nucleic Acid Probes
;
chemistry
;
genetics
;
Oligodeoxyribonucleotides
;
chemistry
;
genetics
;
Oxyphil Cells
;
ultrastructure
;
RNA, Messenger
;
genetics
;
metabolism
8.Effect of antisurvivin oligodeoxynucleotides on proliferation and apoptosis in gastric cancer cell line BGC-823 and the molecular mechanism.
Yong LI ; Li-qiao FAN ; Yan SUN ; Qun ZHAO ; Bi-bo TAN ; Yu LIU
Chinese Journal of Oncology 2011;33(4):265-269
OBJECTIVETo explore the effects of antisense oligodeoxynucleotides (ASODN) on proliferation and apoptosis in gastric cancer cell line BGC-823 cells and the molecular mechanisms induced by ASODN.
METHODSsurvivin ASODN-1, survivin ASODN-2 and survivin ASODN-3 were transfected into BGC-823 cells by Lipofectamine(TM) 2000 transfection reagent. The growth activity of BGC-823 cells was detected by MTT assay. Apoptosis index (AI), proliferation index (PI), cell cycle and expressions of survivin, VEGF and Smac/DIABLO proteins were detected by flow cytometry (FCM). The changes of survivin mRNA, VEGF mRNA and Smac/DIABLO mRNA were detected by RT-PCR.
RESULTSThe expression of survivin was down-regulated by the three ASODN sequences, especially the ASODN-2 was best. At 48 hours after transfection with 600 nmol/L survivin ASODN-2, the cells in G(1)/G(0) phase were significantly increased [(72.25 ± 2.95)%], apoptotic index increased [(11.31 ± 0.38)%], proliferation index decreased [(27.77 ± 2.97)%], compared with those in the control group [(56.25 ± 0.75)%, (1.62 ± 0.36)%, (43.80 ± 0.80)%, all P < 0.05]. The survivin mRNA and protein levels (0.523 ± 0.091, 0.733 ± 0.009) were down-regulated compared with those in the control group (0.861 ± 0.047, 0.997 ± 0.233), VEGF (0.519 ± 0.076, 0.75 ± 0.006) were down-regulated compared with those in the control group (0.779 ± 0.059, 1.000 ± 0.01), while those of Smac/DIABLO(0.899 ± 0.113, 1.637 ± 0.023)were up-regulated compared with those in the control group (0.558 ± 0.041, 1.000 ± 0.049, all P < 0.05).
CONCLUSIONSSurvivin ASODN can induce apoptosis and inhibit the proliferation of gastric cancer cell line BGC-823 cells. Those effects are induced through up-regulation of Smac/DIABLO and down-regulation of survivin and VEGF expression simultaneously.
Apoptosis ; Cell Cycle ; Cell Line, Tumor ; Cell Proliferation ; Down-Regulation ; Humans ; Inhibitor of Apoptosis Proteins ; genetics ; metabolism ; Intracellular Signaling Peptides and Proteins ; genetics ; metabolism ; Mitochondrial Proteins ; genetics ; metabolism ; Oligodeoxyribonucleotides, Antisense ; genetics ; RNA, Messenger ; metabolism ; Stomach Neoplasms ; genetics ; metabolism ; pathology ; Transfection ; Up-Regulation ; Vascular Endothelial Growth Factor A ; genetics ; metabolism
9.Down-regulation of ATP-binding cassette transporter G1 expression by unmethylated CpG oligodeoxynucleotides in RAW 264.7 macrophages.
Jeong Min SEO ; Ji Young LEE ; Geun Eog JI ; Ji Chang YOU
Experimental & Molecular Medicine 2011;43(9):510-516
We have investigated the effect of various forms of phosphodiester cytidine-phosphate-guanosine oligodeoxynucleotides (CpG ODNs) on the production of pro-inflammatory cytokines and related genes in RAW 264.7 macrophages. Treatment with the CpG ODNs increased the expression of tumor necrosis factor alpha (TNF-alpha), IL-6, and inducible nitric oxide synthase but not interleukin-1beta (IL-1beta). We also investigated the effect of CpG ODNs on the expression of ATP-binding cassette transporter A1 (ABCA1) and G1 (ABCG1) genes which are known to facilitate cholesterol efflux from macrophages for anti-atherosclerosis. CpG 2006 significantly reduced the levels of ABCG1 mRNA as determined by real-time polymerase chain reaction, whereas ABCA1 mRNA level was not changed. Western blot analysis further confirmed the reduction of ABCG1 protein expression by CpG 2006. In addition, we also determined the protein level of peroxisome proliferator activated receptor gamma (PPARgamma), which is recognized as a transcriptional activator of ABC transporters, was also reduced by CpG 2006. Thus, these results suggest that ABCG1 is specifically down-regulated by CpG 2006 in a PPARgamma-dependent manner in macrophages.
ATP-Binding Cassette Transporters/drug effects/genetics/*metabolism
;
Animals
;
Atherosclerosis/metabolism
;
Cholesterol/metabolism
;
Cytokines/drug effects/metabolism
;
Gene Expression Regulation
;
Inflammation/*metabolism
;
Interleukin-1beta/drug effects/metabolism
;
Interleukin-6/metabolism
;
Lipoproteins/drug effects/genetics/*metabolism
;
Macrophages/*cytology/*metabolism
;
Mice
;
Nitric Oxide Synthase/drug effects/metabolism
;
Oligodeoxyribonucleotides/*pharmacology
;
PPAR gamma/genetics/*metabolism
;
Tumor Necrosis Factor-alpha/drug effects/metabolism
10.Role of phospholipase D1 in glucose-induced insulin secretion in pancreatic beta cells.
Wei na MA ; Shin Young PARK ; Joong Soo HAN
Experimental & Molecular Medicine 2010;42(6):456-464
As glucose is known to induce insulin secretion in pancreatic beta cells, this study investigated the role of a phospholipase D (PLD)-related signaling pathway in insulin secretion caused by high glucose in the pancreatic beta-cell line MIN6N8. It was found that the PLD activity and PLD1 expression were both increased by high glucose (33.3 mM) treatment. The dominant negative PLD1 inhibited glucose-induced Beta2 expression, and glucose-induced insulin secretion was blocked by treatment with 1-butanol or PLD1-siRNA. These results suggest that high glucose increased insulin secretion through a PLD1-related pathway. High glucose induced the binding of Arf6 to PLD1. Pretreatment with brefeldin A (BFA), an Arf inhibitor, decreased the PLD activity as well as the insulin secretion. Furthermore, BFA blocked the glucose-induced mTOR and p70S6K activation, while mTOR inhibition with rapamycin attenuated the glucose induced Beta2 expression and insulin secretion. Thus, when taken together, PLD1 would appear to be an important regulator of glucose-induced insulin secretion through an Arf6/PLD1/mTOR/p70S6K/Beta2 pathway in MIN6N8 cells.
ADP-Ribosylation Factors/metabolism/physiology
;
Animals
;
Basic Helix-Loop-Helix Transcription Factors/metabolism/physiology
;
Cells, Cultured
;
Gene Expression Regulation, Enzymologic/drug effects
;
Glucose/*pharmacology
;
Insulin/*secretion
;
Insulin-Secreting Cells/*drug effects/enzymology/metabolism/secretion
;
Intracellular Signaling Peptides and Proteins/metabolism/physiology
;
Mice
;
Models, Biological
;
Oligodeoxyribonucleotides, Antisense/pharmacology
;
Phospholipase D/antagonists & inhibitors/genetics/metabolism/*physiology
;
Protein-Serine-Threonine Kinases/metabolism/physiology
;
Ribosomal Protein S6 Kinases, 70-kDa/metabolism/physiology
;
Signal Transduction/drug effects/genetics

Result Analysis
Print
Save
E-mail