1.Interaction of Flightless I with Nup88 and Importin β.
Shengyou LIAO ; Cuihua WANG ; Dong'e TANG ; Jinmei WEI ; Yujiao HE ; Haiting XIONG ; Fengmei XU ; Xuejuan GAO ; Xiaohui LIU ; Langxia LIU
Chinese Journal of Biotechnology 2015;31(8):1247-1254
High expression of Fightless I (FLII) is associated to multiple tumors. Based on our previous study that FLII might be involved in the nuclear export, we assessed the possible interaction of FLII with the nuclear envelop associating proteins Importin β and Nup88. We first constructed GST-FLII, GST-LRR recombinant plasmids and transformed them into the Rosetta strain to produce GST-FLII, GST-LRR fusion protein. After purification of these proteins, GST-pull down, as well as co-immunoprecipitation, were used to test the interaction of FLII with Importin β and Nup88. FLII interacted with Importin β and Nup88, and FLII LRR domain is responsible for these interactions. Thus, FLII may play a role in nuclear export through interaction with Importin β and Nup88.
Humans
;
Microfilament Proteins
;
metabolism
;
Nuclear Pore Complex Proteins
;
metabolism
;
Receptors, Cytoplasmic and Nuclear
;
metabolism
;
Recombinant Fusion Proteins
;
metabolism
;
beta Karyopherins
;
metabolism
2.Effects of gambogic acid on the regulation of nucleoporin Nup88 in U937 cells.
Wenxiu, SHU ; Yan, CHEN ; Jing, HE ; Guohui, CUI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2007;27(4):388-92
In order to investigate the anti-leukemia effects of gambogic acid (GA) and its relation to the regulation of nucleoporin Nup88 in U937 cells in vitro, the inhibitory effect of GA on the growth of U937 cells was examined by using MTT assay. Apoptosis was detected by Annexin-V FITC/PI double-labeled cytometry. Cell cycle regulation was studied by propidium iodide method. Both flow cytometry (FCM) and RT-PCR were employed to assess the expression of Nup88, and the localization of Nup88 was determined by confocal microscopy. The results indicated that GA had strong inhibitory effect on cell proliferation and apoptosis induction activity in U937 cells in vitro in a time-and dose-dependent manner. The 24-h IC(50) value was (1.019+/-0.134) mg/L. Moreover, GA induced arrest of U937 cells in G(0)/G(1) phase. Over-expression of Nup88 was found in U937 cells, whereas GA could significantly down-regulate both the protein and mRNA levels of Nup88. Nup88 was diffusely distributed between nucleus and cytoplasm and was located at the cytoplasmic side of nuclear rim, and occasionally in cytoplasm. It is suggested that GA exerts its anti-leukemia effects by regulating the expression and distribution of nucleoporin Nup88. It promises to be new agent for the treatment of acute leukemia.
Antineoplastic Agents, Phytogenic/*pharmacology
;
Apoptosis/drug effects
;
Cell Proliferation/drug effects
;
Nuclear Pore Complex Proteins/genetics
;
Nuclear Pore Complex Proteins/*metabolism
;
RNA, Messenger/genetics
;
RNA, Messenger/metabolism
;
U937 Cells
;
Xanthones/*pharmacology
3.Deguelin regulates cell cycle and nuclear pore complex protein Nup98 and Nup88 in U937 cells in vitro.
Yan CHEN ; Hong-Li LIU ; Guo-Hui CUI ; Qiu-Ling WU ; Jing HE ; Wei-Hua CHEN
Chinese Journal of Hematology 2007;28(2):115-118
OBJECTIVETo investigate antitumor activity and molecular mechanism of deguelin to the human U937 leukaemia cells and to explore the mechanisms regulating cell cycle and nucleoporin 98 (Nup98) and nucleoporin 88 (Nup88) in vitro.
METHODSThe effects of deguelin on the growth of U937 cells were studied by MTT assay, and the cell cycle of U937 cells by a propidium iodide method. The localization of the nuclear pore complex protein Nup98 and Nup88 was checked by immunofluorescence and immunoelectron microscopy. The expressions of Nup98 and Nup88 in U937 cells were checked by flow cytometry (FCM) and Western blot respectively.
RESULTSThe proliferation of U937 cells was significantly inhibited in a time-dose dependent manner in deguelin-treated group with a 24 h IC50 value of 21.61 nmol/L and 36 h IC50 value of 17.07 nmol/L. U937 cells treated with deguelin showed reduction in the percentages of cells in G0/G1, whereas accumulation of cells in S and G2/M phase. The ratio of G1/G0 phase cells were 73.01%, 71.15%, 68.42%, 52.45%, 43.99% and 22.82%, and that of S phase cells were 17.18%, 16.30%, 18.09%, 27.56%, 31.21% and 46.85%, and that of G2/M phase cells were 9.75%, 12.31%, 13.09%, 18.99%, 24.83% and 27.79% at deguelin concentrations of 0, 5, 10, 20, 40, 80 nmol/L respectively. Nup88 and Nup98 were found on both the nuclear and cytoplasmic side of the U937 cells. The expression of Nup98 was up-regulated and Nup88 down-regulated in deguelin treated U937 cells.
CONCLUSIONDeguelin is able to inhibit the proliferation of U937 cells by regulating the cell cycle. The antitumor activity of deguelin was related to up-regulating the expression of Nup98 and down-regulating Nup88 protein.
Cell Cycle ; drug effects ; Cell Proliferation ; drug effects ; Humans ; Nuclear Pore Complex Proteins ; metabolism ; Rotenone ; analogs & derivatives ; pharmacology ; U937 Cells
4.Overexpression of CHIP in chronic myeloid leukemia K562 cells induces mitotic abnormality.
Ying GAO ; Yan WANG ; Xu-Hui ZHANG ; Guo-Zhu CHEN ; Zhi-Yan DU ; Yuan-Ji XU ; Xiao-Dan YU
Journal of Experimental Hematology 2008;16(4):763-767
This study was aimed to investigate the possible influence of a novel E3 ubiquitin ligase CHIP (carboxyl terminus of Hsc70/Hsp70-interacting protein) on biological characteristics of cancer cells. Stable overexpression models in CML K562 cells were established via lipofectamine-mediated wild type CHIP and its TPR or U-box deletion mutants gene transfection. Followed G418 pressure selection, K562-CHIP stable transfected cell clones were obtained by limited dilution. The proliferation status and cell cycle were observed by MTT assay and FACS. The expression of related proteins and morphological changes were detected by Western blot and Wright-Giemsa staining. The results showed that overexpression of wild type CHIP did not inhibit cell proliferation, but slightly increased cell ratio of G(2)/M phase. CHIP gene had no effect on the stability of BCR-ABL kinase protein. HDAC inhibitor FK228-induced BCR-ABL degradation did not enhanced by CHIP. Notably the enlarged cells and abnormal mitotic cells remarkably increased in K562 WT-CHIP cells, indicating that CHIP may involve in the regulation of mitotic process. It is concluded that wild type CHIP induces mitotic abnormity in K562 cells.
Heat-Shock Proteins
;
genetics
;
metabolism
;
Humans
;
K562 Cells
;
Mitosis
;
Nuclear Pore Complex Proteins
;
genetics
;
metabolism
;
Proto-Oncogene Proteins
;
genetics
;
metabolism
;
Sequence Deletion
;
Transfection
;
Ubiquitin-Protein Ligases
;
genetics
;
metabolism
5.2-DG enhances TRAIL-induced apoptosis of leukemia HL-60 cells.
Su-Rong ZHAO ; Hai-Feng DUAN ; Pei ZHANG ; Hao LIU ; Chen-Chen JIANG ; Zhi-Wen JIANG
Journal of Experimental Hematology 2013;21(2):351-355
This study was purposed to investigate the effects of 2-deoxy-D-glucose (2-DG) on sensitizing HL-60 cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis and its possible mechanism. The proliferative inhibition of HL-60 cells treated with different concentrations of 2-DG and TRAIL was measured by MTT assay. The cells were treated with 2-DG, TRAIL, and 2-DG combined with TRAIL at the concentration < IC50 value, i.e. 10 mmol/L for 2-DG and 100 ng/ml for TRAIL. Apoptosis was analyzed by flow cytometry with PI staining; the expression of RIP1, GRP78, and PARP was analyzed by Western blot; the activity of caspase-3 was detected by special detection kit. The results showed that the combined treatment of HL-60 cells for 48 h induced an apoptotic rate of (45.1 ± 4.3)%, which was significantly higher than that of treated with 2-DG or TRAIL alone; at the same time, the combined treatment potentiated the expression of GRP78 and caspase-3 activity, and down-regulated the expression of RIP1. It is concluded that 2-DG can sensitize HL-60 cells to TRAIL-induced apoptosis, which may be correlated with excessive endoplasmic reticulum stress response, down-regulation of RIP1, and increase of caspase-3 activity.
Apoptosis
;
drug effects
;
Caspase 3
;
metabolism
;
Deoxyglucose
;
pharmacology
;
HL-60 Cells
;
Heat-Shock Proteins
;
metabolism
;
Humans
;
Nuclear Pore Complex Proteins
;
metabolism
;
RNA-Binding Proteins
;
metabolism
;
TNF-Related Apoptosis-Inducing Ligand
;
metabolism
;
pharmacology
6.Calcium regulation of nucleocytoplasmic transport.
Ashapurna SARMA ; Weidong YANG
Protein & Cell 2011;2(4):291-302
Bidirectional trafficking of macromolecules between the cytoplasm and the nucleus is mediated by the nuclear pore complexes (NPCs) embedded in the nuclear envelope (NE) of eukaryotic cell. The NPC functions as the sole pathway to allow for the passive diffusion of small molecules and the facilitated translocation of larger molecules. Evidence shows that these two transport modes and the conformation of NPC can be regulated by calcium stored in the lumen of nuclear envelope and endoplasmic reticulum. However, the mechanism of calcium regulation remains poorly understood. In this review, we integrate data on the observations of calciumregulated structure and function of the NPC over the past years. Furthermore, we highlight challenges in the measurements of dynamic conformational changes and transient transport kinetics in the NPC. Finally, an innovative imaging approach, single-molecule superresolution fluorescence microscopy, is introduced and expected to provide more insights into the mechanism of calcium-regulated nucleocytoplasmic transport.
Active Transport, Cell Nucleus
;
physiology
;
Animals
;
Calcium
;
metabolism
;
Cell Nucleus
;
metabolism
;
Cytoplasm
;
metabolism
;
Diffusion
;
Endoplasmic Reticulum
;
metabolism
;
Eukaryotic Cells
;
metabolism
;
Humans
;
Ion Transport
;
physiology
;
Microscopy, Fluorescence
;
Molecular Conformation
;
Nuclear Pore
;
chemistry
;
metabolism
;
Nuclear Pore Complex Proteins
;
chemistry
;
metabolism
;
Oocytes
;
cytology
;
metabolism
;
Signal Transduction
;
Xenopus laevis
7.Effects of gambogic acid on the regulation of nucleoporin Nup88 in HL-60 cells.
Wen-Xiu SHU ; Yan CHEN ; Jing HE
Chinese Journal of Oncology 2008;30(7):484-489
OBJECTIVETo investigate the effect of gambogic acid (GA) on cell proliferation and induction of apoptosis in HL-60 cells in vitro, as well as the regulation of nucleoporin Nup88 to explore the relationship between them.
METHODSThe effect of GA on the growth of HL-60 cells was determined by MTU assay. Apoptosis was detected with Hoechst 33258 staining and annexin-V FITC/PI double-labeled flow cytometry. The influence on cell cycle was studied by a propidium iodide method. Both flow cytometry (FCM) and RT-PCR techniques were applied to assess the expression of Nup88, whereas the localization of Nup88 was determined by confocal laser scanning microscopy.
RESULTSGA presented striking inhibitory effect on proliferation of HL-60 cells in vitro and induction of apoptosis in a time- and dose-dependent manner. However, no obvious influence was found on the cell cycle in HL-60 cells. The IC50 value for 12 h was 1.797 micromol/L. 15.1% of HL-60 cells went apoptosis when treated with 0.4 micromol/L GA for 12 h. When the dose of GA was increased to 1.6 micromol/L, more than half of cells were apoptotic. On the other hand, the expression level of Nup88 was down-regulated in HL-60 cells induced by GA in a dose-dependent manner. The distribution of Nup88 was also changed from widely dispersed in both nucleus and cytoplasm to that only localized at the cytoplasmic side of nuclear membrane, occasionally in the cytoplasm sporadically.
CONCLUSIONGA exhibites remarkable inhibitory effect on cell proliferation in leukemic cells and inducing apoptosis in HL-60 cells in a cell cycle-independent manner, which might correspond to the regulation of the expression as well as the distribution of nucleoporin Nup88. It may become a new remedy for treatment for acute leukemia.
Antineoplastic Agents, Phytogenic ; administration & dosage ; pharmacology ; Apoptosis ; drug effects ; Cell Cycle ; drug effects ; Cell Proliferation ; drug effects ; Dose-Response Relationship, Drug ; Down-Regulation ; HL-60 Cells ; Humans ; Nuclear Pore Complex Proteins ; metabolism ; RNA, Messenger ; metabolism ; Xanthones ; administration & dosage ; pharmacology
8.The 2A protease of enterovirus 71 cleaves nup62 to inhibit nuclear transport.
Ya-Zhou ZHANG ; Xing GAN ; Juan SONG ; Peng SUN ; Qin-Qin SONG ; Gong-Qi LI ; Lin-Jun SHENG ; Bao-Dong WANG ; Ming-Zhi LU ; Ling-Min LI ; Jun HAN
Chinese Journal of Virology 2013;29(4):421-425
To study the impact of the enterovirus 71(EV71) on the nuclear transport mechanism,The pGFP-NLS vector with nuclear location signal(NLS) was constructed, RD cells transfected by the pGFP-NLS vector were inoculated with the EV71 or cotransfected by EV71-2A vector. The results showed that GFP protein with NLS was expressed in the cytoplasm due to the inhibition of nuclear transport. In order to further study the mechanism of the EV71 to prevent nuclear transport,Nup62 was detected by Western blotting after RD cells were infected with EV71 or transfected by EV71-2A vector. The results showed that decreased expression of Nup62 could be detected after infection with EV71 and transfection by EV71-2A vector. This study demonstrates that the cleavage of Nup62 by EV71 2A protease may be the mechanism of nuclear transport inhibition.
Active Transport, Cell Nucleus
;
Cell Line, Tumor
;
Cell Nucleus
;
metabolism
;
Enterovirus A, Human
;
enzymology
;
genetics
;
metabolism
;
Enterovirus Infections
;
virology
;
Gene Expression Regulation, Viral
;
Genetic Vectors
;
Green Fluorescent Proteins
;
metabolism
;
Humans
;
Membrane Glycoproteins
;
metabolism
;
Nuclear Localization Signals
;
metabolism
;
Nuclear Pore Complex Proteins
;
metabolism
;
Peptide Hydrolases
;
metabolism
;
Recombinant Fusion Proteins
;
metabolism
;
Transfection
9.Mitochondrial aldehyde dehydrogenase 2 protects against high glucose-induced injury in neonatal rat cardiomyocytes by regulating CaN-NFAT3 signaling pathway.
Jianlu GUO ; Pinfang KANG ; Lei ZHU ; Shuo SUN ; Min TAO ; Heng ZHANG ; Bi TANG
Journal of Southern Medical University 2018;38(11):1288-1293
OBJECTIVE:
To investigate whether CaN-NFAT3 pathway mediates the protective effects of aldehyde dehydrogenase (ALDH) 2 in high glucose-treated neonatal rat ventricular myocytes.
METHODS:
The ventricular myocytes were isolated from the heart of neonatal (within 3 days) SD rats by enzyme digestion and cultured in the presence of 5-Brdu. After reaching confluence, the cultured ventricular myocytes were identified using immunofluorescence assay for -SA protein. The cells were then cultured in either normal (5 mmol/L) or high glucose (30 mmol/L) medium in the presence of ALDH2 agonist Alda-1, ALDH 2 inhibitor Daidzin, or Alda-1 and NFAT3 inhibitor (11R-VIVIT). Fluorescent probe and ELISA were used to detect intracellular Ca concentration and CaN content, respectively; ALDH2, CaN and NFAT3 protein expressions in the cells were detected using Western blotting.
RESULTS:
Compared with cells cultured in normal glucose, the cells exposed to high glucose showed a significantly decreased expression of ALDH2 protein ( < 0.05) and increased expressions of CaN ( < 0.05) and NFAT3 proteins with also increased intracellular CaN and Ca concentrations ( < 0.01). Alda-1 treatment significantly lowered Ca concentration ( < 0.05), intracellular CaN content ( < 0.01), and CaN and NFAT3 protein expressions ( < 0.05), and increased ALDH2 protein expression ( < 0.05) in high glucose- exposed cells; Daidzin treatment significantly increased Ca concentration ( < 0.01) and intracellular CaN content ( < 0.05) in the exposed cells. Compared with Alda-1 alone, treatment of the high glucose-exposed cells with both Alda-1 and 11R-VIVIT did not produce significant changes in the expression of ALDH2 protein (>0.05) but significantly reduced the expression of NFAT3 protein ( < 0.05).
CONCLUSIONS
Mitochondrial ALDH2 protects neonatal rat cardiomyocytes against high glucose-induced injury possibly by negatively regulating Ca-CaN-NFAT3 signaling pathway.
Aldehyde Dehydrogenase, Mitochondrial
;
antagonists & inhibitors
;
metabolism
;
Animals
;
Animals, Newborn
;
Benzamides
;
pharmacology
;
Benzodioxoles
;
pharmacology
;
Calcium
;
metabolism
;
Cells, Cultured
;
Culture Media
;
Enzyme Inhibitors
;
pharmacology
;
Glucose
;
administration & dosage
;
pharmacology
;
Isoflavones
;
pharmacology
;
Mitochondria, Heart
;
enzymology
;
Myocytes, Cardiac
;
drug effects
;
metabolism
;
NFATC Transcription Factors
;
metabolism
;
Nuclear Pore Complex Proteins
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
10.HUP98-HOXA9 transgenic mice are susceptible to N-ethyl-N-nitrosourea stimulation in leukemogenesis.
Shun-yuan LU ; Ming-min GU ; Yang WANG ; Yi TAN ; Yue-ping SUN ; Long WANG ; Hui KONG ; Zhen-yu LU ; Zhu-gang WANG
Chinese Journal of Hematology 2004;25(5):257-261
OBJECTIVEIn order to investigate the leukemogenic potential of NUP98-HOXA9 fusion gene in vivo.
METHODSMolecular cloning technology was used to construct NUP98-HOXA9 transgenic plasmid and NUP98-HOXA9 transgenic mice were generated. The genotype and phenotype of the NUP98-HOXA9 transgenic mice were analyzed by PCR, RT-PCR and colony-forming assay. The effect of N-ethyl-N-nitrosourea (ENU) stimulation on the transgenic mice was analyzed by peripheral blood count, bone marrow (BM) cells morphology pathological examination.
RESULTSThe transgenic expression was detected in 5 independent lines of NUP98-HOXA9 transgenic mice, but no expected phenotypes was found in 2 year follow-up. Upon ENU stimulation, 2 of 10 transgenic mice developed myeloid leukemia, suggesting that NUP98-HOXA9 transgenic mice have increased susceptibility to ENU mutagenesis in leukemogenesis.
CONCLUSIONThe fusion gene expressed in BM cells of NUP98-HOXA9 transgenic mice. It seems that the expression of the fusion gene is insufficient to trigger leukemogenesis. However, the increased susceptibility to ENU mutagenesis suggests that NUP98-HOXA9 fusion gene might play a potential role in leukemogenesis.
Animals ; Bone Marrow Cells ; metabolism ; pathology ; Disease Models, Animal ; Ethylnitrosourea ; Female ; Gene Expression Regulation, Leukemic ; Genotype ; Homeodomain Proteins ; biosynthesis ; genetics ; Humans ; Leukemia, Myeloid ; blood ; chemically induced ; genetics ; Male ; Mice ; Mice, Transgenic ; Nuclear Pore Complex Proteins ; biosynthesis ; genetics ; Oncogene Proteins, Fusion ; biosynthesis ; genetics ; Phenotype ; Plasmids ; Reverse Transcriptase Polymerase Chain Reaction ; Transfection