1.Benefit of use of computer network in hospital
Journal of Practical Medicine 1998;344(1):12-14
In the computer network, any one computer can access the database or external equipment (such as printer) in other computer if it is authorized the right of access. Therefore, the manager of scientific research and managers of hospital can collect timely and correctly the information from which can make the correct evaluations and decisions
Neural Networks (Computer)
;
hospitals
2.Banded chromosome images recognition based on dense convolutional network with segmental recalibration.
Jianming LI ; Bin CHEN ; Xiaofei SUN ; Tao FENG ; Yuefei ZHANG
Journal of Biomedical Engineering 2021;38(1):122-130
Human chromosomes karyotyping is an important means to diagnose genetic diseases. Chromosome image type recognition is a key step in the karyotyping process. Accurate and efficient identification is of great significance for automatic chromosome karyotyping. In this paper, we propose a model named segmentally recalibrated dense convolutional network (SR-DenseNet). In each stage of the model, the dense connected network layers is used to extract the features of different abstract levels of chromosomes automatically, and then the concatenation of all the layers which extract different local features is recalibrated with squeeze-and-excitation (SE) block. SE blocks explicitly construct learnable structures for importance of the features. Then a model fusion method is proposed and an expert group of chromosome recognition models is constructed. On the public available Copenhagen chromosome recognition dataset (G-bands) the proposed model achieves error rate of only 1.60%, and with model fusion the error further drops to 0.99%. On the Padova chromosome dataset (Q-bands) the model gets the corresponding error rate of 6.67%, and with model fusion the error further drops to 5.98%. The experimental results show that the method proposed in this paper is effective and has the potential to realize the automation of chromosome type recognition.
Chromosomes
;
Humans
;
Neural Networks, Computer
3.Initiation of the computer network in the health sector
Journal of Medical and Pharmaceutical Information 1999;(1):5-9
Vietnam officially integrated into the Internet in 19th November 1997. The health sector actively prepared for connecting the Internet via National gate, currently set up the local area network (LAN) to establish the Intranet of the sector. The Internet the central institute for medical science information would be major institute for setting up this tool.
Neural Networks (Computer)
;
Health Care Sector
4.Study on the inverse problem of diffuse optical tomography based on improved stacked auto-encoder.
Wenxu TIAN ; Dan YANG ; Zhulin WEI ; Jiao WANG
Journal of Biomedical Engineering 2021;38(4):774-782
The inverse problem of diffuse optical tomography (DOT) is ill-posed. Traditional method cannot achieve high imaging accuracy and the calculation process is time-consuming, which restricts the clinical application of DOT. Therefore, a method based on stacked auto-encoder (SAE) was proposed and used for the DOT inverse problem. Firstly, a traditional SAE method is used to solved the inverse problem. Then, the output structure of SAE neural network is improved to a single output SAE, which reduce the burden on the neural network. Finally, the improved SAE method is used to compare with traditional SAE method and traditional levenberg-marquardt (LM) iterative method. The result shows that the average time to solve the inverse problem of the method proposed in this paper is only 1.67% of the LM method. The mean square error (MSE) value is 46.21% lower than the traditional iterative method, 61.53% lower than the traditional SAE method, and the image correlation coefficient(ICC) value is 4.03% higher than the traditional iterative method, 18.7% higher than the traditional SAE method and has good noise immunity under 3% noise conditions. The research results in this article prove that the improved SAE method has higher image quality and noise resistance than the traditional SAE method, and at the same time has a faster calculation speed than the traditional iterative method, which is conducive to the application of neural networks in DOT inverse problem calculation.
Algorithms
;
Neural Networks, Computer
;
Tomography, Optical
5.Research on remote sensing recognition of wild planted Lonicera japonica based on deep convolutional neural network.
Ting-Ting SHI ; Xiao-Bo ZHANG ; Lan-Ping GUO ; Zhi-Xian JING ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2020;45(23):5658-5662
Identification of Chinese medicinal materials is a fundamental part and an important premise of the modern Chinese medicinal materials industry. As for the traditional Chinese medicinal materials that imitate wild cultivation, due to their scattered, irregular, and fine-grained planting characteristics, the fine classification using traditional classification methods is not accurate. Therefore, a deep convolution neural network model is used for imitating wild planting. Identification of Chinese herbal medicines. This study takes Lonicera japonica remote sensing recognition as an example, and proposes a method for fine classification of L. japonica based on a deep convolutional neural network model. The GoogLeNet network model is used to learn a large number of training samples to extract L. japonica characteristics from drone remote sensing images. Parameters, further optimize the network structure, and obtain a L. japonica recognition model. The research results show that the deep convolutional neural network based on GoogLeNet can effectively extract the L. japonica information that is relatively fragmented in the image, and realize the fine classification of L. japonica. After training and optimization, the overall classification accuracy of L. japonica can reach 97.5%, and total area accuracy is 94.6%, which can provide a reference for the application of deep convolutional neural network method in remote sensing classification of Chinese medicinal materials.
Lonicera
;
Neural Networks, Computer
;
Remote Sensing Technology
6.The superior fault tolerance of artificial neural network training with a fault/noise injection-based genetic algorithm.
Feng SU ; Peijiang YUAN ; Yangzhen WANG ; Chen ZHANG
Protein & Cell 2016;7(10):735-748
Artificial neural networks (ANNs) are powerful computational tools that are designed to replicate the human brain and adopted to solve a variety of problems in many different fields. Fault tolerance (FT), an important property of ANNs, ensures their reliability when significant portions of a network are lost. In this paper, a fault/noise injection-based (FIB) genetic algorithm (GA) is proposed to construct fault-tolerant ANNs. The FT performance of an FIB-GA was compared with that of a common genetic algorithm, the back-propagation algorithm, and the modification of weights algorithm. The FIB-GA showed a slower fitting speed when solving the exclusive OR (XOR) problem and the overlapping classification problem, but it significantly reduced the errors in cases of single or multiple faults in ANN weights or nodes. Further analysis revealed that the fit weights showed no correlation with the fitting errors in the ANNs constructed with the FIB-GA, suggesting a relatively even distribution of the various fitting parameters. In contrast, the output weights in the training of ANNs implemented with the use the other three algorithms demonstrated a positive correlation with the errors. Our findings therefore indicate that a combination of the fault/noise injection-based method and a GA is capable of introducing FT to ANNs and imply that the distributed ANNs demonstrate superior FT performance.
Algorithms
;
Humans
;
Models, Genetic
;
Neural Networks (Computer)
7.A review of brain-like spiking neural network and its neuromorphic chip research.
Huigang ZHANG ; Guizhi XU ; Jiarong GUO ; Lei GUO
Journal of Biomedical Engineering 2021;38(5):986-994
Under the current situation of the rapid development of brain-like artificial intelligence and the increasingly complex electromagnetic environment, the most bionic and anti-interference spiking neural network has shown great potential in computing speed, real-time information processing, and spatiotemporal data processing. Spiking neural network is the core part of brain-like artificial intelligence, which realizes brain-like computing by simulating the structure of biological neural network and the way of information transmission. This article first summarizes the advantages and disadvantages of the five models, and analyzes the characteristics of several network topologies. Then, it summarizes the spiking neural network algorithms. The unsupervised learning based on spike timing dependent plasticity (STDP) rules and four types of supervised learning algorithms are analyzed. Finally, the research on brain-like neuromorphic chips at home and abroad are reviewed. This paper aims to provide learning ideas and research directions for new colleagues in the field of spiking neural network.
Algorithms
;
Artificial Intelligence
;
Brain
;
Neural Networks, Computer
8.Study on noninvasive blood glucose detection method using the near-infrared light based on particle swarm optimization and back propagation neural network.
Donghai YE ; Jinxiu CHENG ; Zhong JI
Journal of Biomedical Engineering 2022;39(1):158-165
Most of the existing near-infrared noninvasive blood glucose detection models focus on the relationship between near-infrared absorbance and blood glucose concentration, but do not consider the impact of human physiological state on blood glucose concentration. In order to improve the performance of prediction model, particle swarm optimization (PSO) algorithm was used to train the structure paramters of back propagation (BP) neural network. Moreover, systolic blood pressure, pulse rate, body temperature and 1 550 nm absorbance were introduced as input variables of blood glucose concentration prediction model, and BP neural network was used as prediction model. In order to solve the problem that traditional BP neural network is easy to fall into local optimization, a hybrid model based on PSO-BP was introduced in this paper. The results showed that the prediction effect of PSO-BP model was better than that of traditional BP neural network. The prediction root mean square error and correlation coefficient of ten-fold cross-validation were 0.95 mmol/L and 0.74, respectively. The Clarke error grid analysis results showed that the proportion of model prediction results falling into region A was 84.39%, and the proportion falling into region B was 15.61%, which met the clinical requirements. The model can quickly measure the blood glucose concentration of the subject, and has relatively high accuracy.
Algorithms
;
Blood Glucose
;
Humans
;
Neural Networks, Computer
9.Labelling, segmentation and application of neural network based on machine learning of three-dimensional intraoral anatomical features.
Cheng LI ; Hu CHEN ; Yong WANG ; Yu Chun SUN
Chinese Journal of Stomatology 2022;57(5):540-546
With the advent of the era of big data, artificial intelligence based on machine learning, especially artificial neural network has rapidly developed and applicated in the field of stomatology, owning huge potential in segmentation and labelling of three-dimensional intraoral anatomical features. Automatic segmentation, labelling and diagnosis can assist dentists and technicians to complete heavy and repeat work, change stomatology from subjective perception to objective science, and help to make diagnosis and treatment plan efficiently and accurately. This review briefly summarized related knowledge and development of machine learning and artificial neural network, its application status and existing problems in the field of segmentation and labelling of three-dimensional intraoral anatomical features, and provided an outlook of its future development.
Artificial Intelligence
;
Machine Learning
;
Neural Networks, Computer
10.A method for photoplethysmography signal quality assessment fusing multi-class features with multi-scale series information.
Yusheng QI ; Aihua ZHANG ; Yurun MA ; Huidong WANG ; Jiaqi LI ; Cheng CHEN
Journal of Biomedical Engineering 2023;40(3):536-543
Photoplethysmography (PPG) is often affected by interference, which could lead to incorrect judgment of physiological information. Therefore, performing a quality assessment before extracting physiological information is crucial. This paper proposed a new PPG signal quality assessment by fusing multi-class features with multi-scale series information to address the problems of traditional machine learning methods with low accuracy and deep learning methods requiring a large number of samples for training. The multi-class features were extracted to reduce the dependence on the number of samples, and the multi-scale series information was extracted by a multi-scale convolutional neural network and bidirectional long short-term memory to improve the accuracy. The proposed method obtained the highest accuracy of 94.21%. It showed the best performance in all sensitivity, specificity, precision, and F1-score metrics, compared with 6 quality assessment methods on 14 700 samples from 7 experiments. This paper provides a new method for quality assessment in small samples of PPG signals and quality information mining, which is expected to be used for accurate extraction and monitoring of clinical and daily PPG physiological information.
Photoplethysmography
;
Machine Learning
;
Neural Networks, Computer