1.Radiation-induced GATA3 expression in lung epithelial cells and mechanism of RNA methylation
Junxuan YI ; Xiaodan DONG ; Wenxiang XUE ; Shuying GAO ; Naiwen XUE ; Shunzi JIN
Chinese Journal of Radiological Health 2023;32(3):223-229
Objective:
To investigate GATA3 expression and the regulatory mechanism of m6A modification in the re-
sponse of alveolar epithelial cells to radiation, and to provide a new therapeutic target for radiation-induced lung injury based on its pathogenesis.
Methods:
Human lung epithelial cell line (A549) and mouse lung epithelial cell line (MLE-12) were
exposed to X-ray irradiation with a single dose of 10 Gy (dose rate 1 Gy/min) and 6 Gy (dose rate 0.75 Gy/min), respect-
ively. The expression of VIRMA gene (RNA methylase) was inhibited by lipofection of A549 cells and MLE-12 cells with shRNA-VIRMA plasmid and siRNA-VIRMA interfering fragment, respectively. Quantification of m6A RNA methylation
was performed by colorimetry. Changes in the expression of mRNAs of VIRMA, GATA3, and epithelial-mesenchymal transition (EMT) markers in irradiated A549 and MLE-12 cells were determined by qRT-PCR. Changes in the expression of
VIRMA, GATA3, and EMT marker proteins in irradiated A549 and MLE-12 cells were determined by Western blot.
Results:
Radiation up-regulated the expression of methylase VIRMA in A549 and MLE-12 cells, which in turn enhanced
the m6A of total RNA and the expression of GATA3 gene and protein, resulting in EMT. Furthermore, in A549 and MLE-12
cells, interference of the VIRMA gene significantly reduced the expression of GATA3 gene and protein and the expression of EMT-related molecules.
Conclusion
Radiation induces m6A modification in alveolar epithelial cells, which up-regu-
lates the expression of GATA3 gene and induces EMT, thus playing an important role in the process of radiation-induced lung injury.