1.Clinical study on intravenous lidocaine suppressing fentanyl-induced cough
Qi ZHOU ; Shao-Chuan FU ; Nai-Quan MA ; Li CHEN ; Yin-Hong GU ; Chen-Hai WU ;
Chinese Journal of Primary Medicine and Pharmacy 2006;0(08):-
Objective To evaluate the effects of different doses of lidocaine on suppressing fentanyl-induced cough and determine a safe suppressing dose.Methods Two hundred patients undergoing general anesthesia were randomized to four groups evenly.The following medications were given within ten seconds:normal saline 10ml (groupⅠ,control group),lidocaine 1 mg/kg (groupⅡ),lidoeaine 1.5 mg/kg(groupⅢ),lidocaine 2mg/kg (groupⅣ).Toxic symptoms of lidocaine were recorded within lmin after the administration of lidocaine,then fentanyl 3?g/ kg was given intravenously within 5 seconds.Cough incidence and cough grade were recorded within 2rain after the administration of fentanyl.Systolic blood pressure (SBP),diastolic blood pressure (DBP),heart rates (HR),and satu- ration of pulse oximeter(SpO2) were recorded during different time points of induction,all recorded data were anal- ysed by the statistical software,P value
2.Comparative Genomics Reveals Evolutionary Drivers of Sessile Life and Left-right Shell Asymmetry in Bivalves
Zhang YANG ; Mao FAN ; Xiao SHU ; Yu HAIYAN ; Xiang ZHIMING ; Xu FEI ; Li JUN ; Wang LILI ; Xiong YUANYAN ; Chen MENGQIU ; Bao YONGBO ; Deng YUEWEN ; Huo QUAN ; Zhang LVPING ; Liu WENGUANG ; Li XUMING ; Ma HAITAO ; Zhang YUEHUAN ; Mu XIYU ; Liu MIN ; Zheng HONGKUN ; Wong NAI-KEI ; Yu ZINIU
Genomics, Proteomics & Bioinformatics 2022;(6):1078-1091
Bivalves are species-rich mollusks with prominent protective roles in coastal ecosystems.Across these ancient lineages,colony-founding larvae anchor themselves either by byssus produc-tion or by cemented attachment.The latter mode of sessile life is strongly molded by left-right shell asymmetry during larval development of Ostreoida oysters such as Crassostrea hongkongensis.Here,we sequenced the genome of C.hongkongensis in high resolution and compared it to reference bivalve genomes to unveil genomic determinants driving cemented attachment and shell asymmetry.Importantly,loss of the homeobox gene Antennapedia(Antp)and broad expansion of lineage-specific extracellular gene families are implicated in a shift from byssal to cemented attachment in bivalves.Comparative transcriptomic analysis shows a conspicuous divergence between left-right asymmetrical C.hongkongensis and symmetrical Pinctada fucata in their expression profiles.Especially,a couple of orthologous transcription factor genes and lineage-specific shell-related gene families including that encoding tyrosinases are elevated,and may cooperatively govern asymmet-rical shell formation in Ostreoida oysters.