1.Expression of Cx43 and Cx45 in Cardiomyocytes of an Overworked Rat Model.
Bo Fan YANG ; Jing Zhuo SHI ; Jing LI ; Yu Peng PAN ; Ning XIAO ; Yan Geng YU ; Fu ZHANG ; Hui Jun WANG ; Dong Ri LI
Journal of Forensic Medicine 2019;35(5):567-571
Objective To study the effect of overwork stress response on the expression of connexin 43(Cx43) and connexin 45(Cx45) in cardiomyocytes and on cardiac function. Methods The experimental animals were divided into control group, overworked 1-month group and overworked 2-month group. A overworked rat model was established by forcing swimming of overworked group. The expressions of Cx43 and Cx45 in myocardial tissues of experimental animals were detected by Western blotting, while the corresponding myocardial tissues were stained with hematoxylin-eosin (HE) staining and Masson's staining, then histologically observed. Results Western blotting results showed that, compared with the control group, Cx43 expression in myocardial tissues of overworked rats decreased while Cx45 expression increased. HE staining and Masson's staining results showed that hypertrophy, rupture and interstitial fiber tissue hyperplasia were observed in myocardial fibers of overworked rats. Conclusion Overwork stress response may affect cardiac function as an independent factor and may even cause heart failure or arrhythmias and lead to death.
Animals
;
Arrhythmias, Cardiac/metabolism*
;
Connexin 43/metabolism*
;
Connexins/metabolism*
;
Heart Failure
;
Myocardium
;
Myocytes, Cardiac/metabolism*
;
Rats
2.Death and Survival of Cardiomyocytes in Acute Ischemia.
Korean Circulation Journal 2006;36(3):165-177
Ischemia is the most common and important cause of injury to cardiomyocytes. Acute ischemia causes profound derangement of the cellular energetics and metabolism, and this ultimately leads to cell death. Experimental studies have demonstrated the presence of an endogenous protective mechanism that can diminish or delay cell death from ischemic insult; this is known as ischemic preconditioning. In this review, we summarize the recent knowledge of the cellular biology of acute ischemic injury and also signaling mechanisms of cardioprotection that are involved in preconditioning. Further, we briefly discuss the clinical implications.
Cell Death
;
Ischemia*
;
Ischemic Preconditioning
;
Metabolism
;
Myocytes, Cardiac*
3.Effects of aconitine on Ca2+ oscillation in cultured myocytes of neonatal rats.
Yan, LIU ; Shiwei, ZHANG ; Man, LIANG ; Qian, LIU ; Liang, LIU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2008;28(5):499-503
In order to investigate the effects of aconitine on [Ca2+] oscillation patterns in cultured myocytes of neonatal rats, fluorescent Ca2+ indicator Fluo-4 NW and laser scanning confocal microscope (LSCM) were used to detect the real-time changes of [Ca2+] oscillation patterns in the cultured myocytes before and after aconitine (1.0 micromol/L) incubation or antiarrhythmic peptide (AAP) and aconitine co-incubation. The results showed under control conditions, [Ca2+] oscillations were irregular but relatively stable, occasionally accompanied by small calcium sparks. After incubation of the cultures with aconitine, high frequency [Ca2+] oscillations emerged in both nuclear and cytoplasmic regions, whereas typical calcium sparks disappeared and the average [Ca2+] in the cytoplasm of the cardiomyocyte did not change significantly. In AAP-treated cultures, intracellular [Ca2+] oscillation also changed, with periodic frequency, increased amplitudes and prolonged duration of calcium sparks. These patterns were not altered significantly by subsequent aconitine incubation. The basal value of [Ca2+] in nuclear region was higher than that in the cytoplasmic region. In the presence or absence of drugs, the [Ca2+] oscillated synchronously in both the nuclear and cytoplasmic regions of the same cardiomyocyte. It was concluded that although oscillating strenuously at high frequency, the average [Ca2+] in the cytoplasm of cardiomyocyte did not change significantly after aconitine incubation, compared to the controls. The observations indicate that aconitine induces the changes in [Ca2+] oscillation frequency other than the Ca2+ overload.
Aconitine/*pharmacology
;
Animals, Newborn
;
Calcium Signaling/*drug effects
;
Cells, Cultured
;
Myocytes, Cardiac/cytology
;
Myocytes, Cardiac/*metabolism
;
Rats, Sprague-Dawley
4.To advocate the study on early postburn internal organ injury.
Chinese Journal of Burns 2004;20(5):260-261
Burns
;
complications
;
metabolism
;
Endotoxemia
;
etiology
;
metabolism
;
Humans
;
Multiple Organ Failure
;
etiology
;
metabolism
;
Myocytes, Cardiac
;
metabolism
5.MicroRNA-34a regulates high glucose-induced apoptosis in H9c2 cardiomyocytes.
Fang ZHAO ; Bo LI ; Yin-zhi WEI ; Bin ZHOU ; Han WANG ; Ming CHEN ; Xue-dong GAN ; Zhao-hui WANG ; Shi-xi XIONG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(6):834-839
Hyperglycemia is an important initiator of cardiovascular disease, contributing to the development of cardiomyocyte death and diabetic complications. The purpose of the present study was to investigate whether high glucose state could induce apoptosis of rat cardiomyocyte cell line H9c2 through microRNA-mediated Bcl-2 signaling pathway. The expression of miR-34a and Bcl-2 mRNA was detected by using real-time PCR. Western blotting was used to examine the changes in apoptosis-associated protein Bcl-2. Apoptosis of H9c2 cells was tested by using flow cytometry. The results showed that the expression of miR-34a was significantly elevated and that of Bcl-2 was strongly reduced, and apoptosis of cardiomyocytes was apparently increased in the high-glucose-treated H9c2 cells as compared with normal-glucose-treated controls. In addition, we identified Bcl-2 gene was the target of miR-34a. miR-34a mimics reduced the expression of Bcl-2 and increased glucose-induced apoptosis, but miR-34a inhibitor acted as the opposite mediator. Our data demonstrate that miR-34a contributes to high glucose-induced decreases in Bcl-2 expression and subsequent cardiomyocyte apoptosis.
Animals
;
Apoptosis
;
Cell Line
;
Glucose
;
metabolism
;
MicroRNAs
;
genetics
;
metabolism
;
Myocytes, Cardiac
;
metabolism
;
Rats
6.Functional roles of sodium-calcium exchange in autorhythmicity and action potential of murine fetal cardiomyocytes at early developmental stage.
Hong-Yan LUO ; Xin-Wu HU ; Liang-Pin ZHANG ; Ying ZENG ; Xiu-Wen GUAN
Acta Physiologica Sinica 2020;72(6):757-764
The aim of the present paper was to study the role of sodium calcium exchanger (NCX) in the generation of action potentials (APs) in cardiomyocytes during early developmental stage (EDS). The precisely dated embryonic hearts of C57 mice were dissected and enzymatically dissociated to single cells. The changes of APs were recorded by whole-cell patch-clamp technique before and after administration of NCX specific blockers KB-R7943 (5 μmol/L) and SEA0400 (1 μmol/L). The results showed that, both KB-R7943 and SEA0400 had potent negative chronotropic effects on APs of pacemaker-like cells, while such effects were only observed in some ventricular-like cardiomyocytes. The negative chronotropic effect of KB-R7943 on ventricular-like cardiomyocytes was accompanied by shortening of AP duration (APD), whereas such an effect of SEA0400 was paralleled by decrease in velocity of diastolic depolarization (Vdd). From embryonic day 9.5 (E9.5) to E10.5, the negative chronotropic effects of KB-R7943 and SEA0400 on ventricular-like APs of embryonic cardiomyocytes gradually disappeared. These results suggest that, in the short-term development of early embryo, the function of NCX may experience developmental changes as evidenced by different roles of NCX in autorhythmicity and APs generation, indicating that NCX function varies with different conditions of cardiomyocytes.
Action Potentials
;
Animals
;
Calcium/metabolism*
;
Mice
;
Myocytes, Cardiac/metabolism*
;
Sodium/metabolism*
;
Sodium-Calcium Exchanger
;
Thiourea/pharmacology*
8.Postnatal state transition of cardiomyocyte as a primary step in heart maturation.
Zheng LI ; Fang YAO ; Peng YU ; Dandan LI ; Mingzhi ZHANG ; Lin MAO ; Xiaomeng SHEN ; Zongna REN ; Li WANG ; Bingying ZHOU
Protein & Cell 2022;13(11):842-862
Postnatal heart maturation is the basis of normal cardiac function and provides critical insights into heart repair and regenerative medicine. While static snapshots of the maturing heart have provided much insight into its molecular signatures, few key events during postnatal cardiomyocyte maturation have been uncovered. Here, we report that cardiomyocytes (CMs) experience epigenetic and transcriptional decline of cardiac gene expression immediately after birth, leading to a transition state of CMs at postnatal day 7 (P7) that was essential for CM subtype specification during heart maturation. Large-scale single-cell analysis and genetic lineage tracing confirm the presence of transition state CMs at P7 bridging immature state and mature states. Silencing of key transcription factor JUN in P1-hearts significantly repressed CM transition, resulting in perturbed CM subtype proportions and reduced cardiac function in mature hearts. In addition, transplantation of P7-CMs into infarcted hearts exhibited cardiac repair potential superior to P1-CMs. Collectively, our data uncover CM state transition as a key event in postnatal heart maturation, which not only provides insights into molecular foundations of heart maturation, but also opens an avenue for manipulation of cardiomyocyte fate in disease and regenerative medicine.
Gene Expression Regulation
;
Heart
;
Myocytes, Cardiac/metabolism*
;
Single-Cell Analysis
;
Transcription Factors/metabolism*
9.Effect of Zhenwu Decoction on electrical remodeling of cardiomyocytes in heart failure via I_(to)/Kv channels.
Chi CHE ; Xiao-Lin WANG ; Zhi-Yong CHEN ; Mei-Qun ZHENG ; Wei TANG ; Zong-Qiong LU ; Jia-Shuai GUO ; Wan-Qing HUANG ; Xin TIAN ; Lin LI
China Journal of Chinese Materia Medica 2023;48(13):3565-3575
This study aimed to investigate the underlying mechanism of Zhenwu Decoction in the treatment of heart failure by regulating electrical remodeling through the transient outward potassium current(I_(to))/voltage-gated potassium(Kv) channels. Five normal SD rats were intragastrically administered with Zhenwu Decoction granules to prepare drug-containing serum, and another seven normal SD rats received an equal amount of distilled water to prepare blank serum. H9c2 cardiomyocytes underwent conventional passage and were treated with angiotensin Ⅱ(AngⅡ) for 24 h. Subsequently, 2%, 4%, and 8% drug-containing serum, simvastatin(SIM), and BaCl_2 were used to interfere in H9c2 cardiomyocytes for 24 h. The cells were divided into a control group [N, 10% blank serum + 90% high-glucose DMEM(DMEM-H)], a model group(M, AngⅡ + 10% blank serum + 90% DMEM-H), a low-dose Zhenwu Decoction-containing serum group(Z1, AngⅡ + 2% drug-containing serum of Zhenwu Decoction + 8% blank serum + 90% DMEM-H), a medium-dose Zhenwu Decoction-containing serum group(Z2, AngⅡ + 4% drug-containing serum of Zhenwu Decoc-tion + 6% blank serum + 90% DMEM-H), a high-dose Zhenwu Decoction-containing serum group(Z3, AngⅡ + 8% drug-containing serum of Zhenwu Decoction + 2% blank serum + 90% DMEM-H), an inducer group(YD, AngⅡ + SIM + 10% blank serum + 90% DMEM-H), and an inhibitor group(YZ, AngⅡ + BaCl_2 + 10% blank serum + 90% DMEM-H). The content of ANP in cell extracts of each group was detected by ELISA. The relative mRNA expression levels of ANP, Kv1.4, Kv4.2, Kv4.3, DPP6, and KChIP2 were detected by real-time quantitative PCR. The protein expression of Kv1.4, Kv4.2, Kv4.3, DPP6, and KChIP2 was detected by Western blot. I_(to) was detected by the whole cell patch-clamp technique. The results showed that Zhenwu Decoction at low, medium, and high doses could effectively reduce the surface area of cardiomyocytes. Compared with the M group, the Z1, Z2, Z3, and YD groups showed decreased ANP content and mRNA level, increased protein and mRNA expression of Kv4.2, Kv4.3, DPP6, and KChIP2, and decreased protein and mRNA expression of Kv1.4, and the aforementioned changes were the most notable in the Z3 group. Compared with the N group, the Z1, Z2, and Z3 groups showed significantly increased peak current and current density of I_(to). The results indicate that Zhenwu Decoction can regulate myocardial remodeling and electrical remodeling by improving the expression trend of Kv1.4, Kv4.2, Kv4.3, KChIP2, and DPP6 proteins and inducing I_(to) to regulate Kv channels, which may be one of the mechanisms of Zhenwu Decoction in treating heart failure and related arrhythmias.
Rats
;
Animals
;
Myocytes, Cardiac
;
Atrial Remodeling
;
Rats, Sprague-Dawley
;
Heart Failure/metabolism*
;
RNA, Messenger/metabolism*
;
Potassium
10.The influence of dehydrocorydaline on intracellular free calcium concentration during hypoxia in myocardial cell of guinea-pigs.
Xin ZHAO ; Hao TANG ; Ya-Jie WANG ; Xin YU ; Ying LIU ; Jie ZHANG ; Jia QIN ; Shan-Fen GUO
Chinese Journal of Applied Physiology 2003;19(3):222-225
AIMTo study the effect of Dehydrocorydaline and Verapamil (Ver) on intracellular free calcium concentration of myocardial cell ([Ca2+]i) under hypoxic condition.
METHODSWe adopted guinea-pig heart Langendorff instillation. The myocardial cells were isolated by collagenase (Type I, sigma)and marked by fluorescence ratio imaging. The suspension of myocardial cells was assigned to six groups: DHC, Ver, and control were each two. Each three groups was exposed to hypoxia and normoxia before determination of [Ca2+]i.
RESULTS(1) In normoxia state, [Ca2+]i was 120.5-8.3 nml/L (n = 20).( 2) In hypoxia state, the increased [Ca2+]i of myocardial cells was proportional to the time (degree) of hypoxia. Correlation coefficient (r) was about 0.98. (3) Under the condition of normoxia DHC and Ver decreased [Ca2+]i. (4) DHC was obviously slow the increase of [Ca2+]i after hypoxia.
CONCLUSIONIn normoxia and hypoxia, DHC decreases the increased [Ca2+]i. It can prevent intracellular calcium overload. We believe DHC may improve self-protected performance of myocardial cells.
Alkaloids ; pharmacology ; Animals ; Calcium ; metabolism ; Cell Hypoxia ; Female ; Guinea Pigs ; Male ; Myocytes, Cardiac ; drug effects ; metabolism