1.The changes of potassium currents in rabbit ventricle with healed myocardial infarction.
Nian, LIU ; Huiyan, NIU ; Yang, LI ; Cuntai, ZHANG ; Qiang, ZHOU ; Yanfei, RUAN ; Jun, PU ; Zaiying, LU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2004;24(2):128-31
To elucidate the mechanism of arrhythmia in healed myocardial infarction (HMI), the changes of action potential duration (APD), transient outward potassium current (Ito), delayed rectifier potassium current (IK) and inward rectifier potassium current (IK1) of left ventricular myocytes in non-infarcted zone of HMI were investigated. Rabbits were randomly assigned into two groups: HMI group, in which animals were subjected to thoracotomy and ligation of the circumflex coronary and sham-operated group, in which rabbits underwent thoracotomy but no conorary ligation. 3 months after the operation, the whole myocyte patch clamp technique was used to record APD, Ito, IK, and IK1 of ventricular myocytes in non-infarcted zone. Our results showed that the membrane capacitance was larger in HMI group than in sham-operated group. Action potential duration was significantly lengthened in HMI group and early afterdepolarization (EAD) appeared in HMI group. The densities of Ito, I(K, tail), and IK1 were reduced significantly in HMI group, from 6.72 +/- 0.42 pA/pF, 1.54 +/- 0.13 pA/pF and 25.6 +/- 2.6 pA/pF in sham-operated group to 4.03 +/- 0.33 pA/pF, 1.14 +/- 0.11 pA/pF and 17.6 +/- 2.3 pA/pF, respectively. It is concluded that the reduced densities of Ito, I(K, tail) and IK1 in ventricular myocytes of non-infarcted zone in HMI were responsible for the prolongation of APD and the presentation of EAD which played important roles in the development of malignant arrhythmia in HMI.
Action Potentials
;
Arrhythmia/*etiology
;
Heart Ventricles/metabolism
;
Myocardial Infarction/complications
;
Myocardial Infarction/metabolism
;
Myocardial Infarction/*pathology
;
Myocytes, Cardiac/*cytology
;
Patch-Clamp Techniques
;
Potassium Channels/*metabolism
2.Cathepsin L expression in plasma after acute myocardial ischemia and ischemia-reperfusion in rats.
Geng-qian ZHANG ; Zheng LIANG ; Peng YAN ; Xiao-jia ZHANG
Journal of Forensic Medicine 2014;30(4):253-256
OBJECTIVE:
To test cathepsin L as a biomarker of myocardial ischemia by examination of cathepsin L expression in plasma after myocardial ischemia and ischemia-reperfusion in rats.
METHODS:
The rat models were established and divided in acute myocardial ischemia model (myocardial ischemia 30 min, 1 h, 2 h groups), ischemia-reperfusion model (ischemia-reperfusion group), and isoflurane-pretreated ischemia-reperfusion model (isoflurane-pretreated group), respectively. Normal control group and sham-operated group were established as contrast. The contents of cathepsin L in plasma were examined by ELISA and myocardial infarction areas were measured after TTC staining.
RESULTS:
No statistical significant changes were found among the experimental groups compared with the normal control group and sham-operated group (P>0.05). The cathepsin L from the ischemia-reperfusion group increased to 2.37 times compared with the normal control group (P<0.05). The cathepsin L and myocardium infarction size of isoflurane-pretreated group decreased compared with the ischemia-reperfusion group (P<0.05).
CONCLUSION
The cathepsin L in plasma is not a promising biomarker of acute myocardial ischemia. Isoflurane preconditioning can reduce the cathepsin L in plasma caused by ischemia-reperfusion injury.
Animals
;
Biomarkers/blood*
;
Cathepsin L/analysis*
;
Isoflurane
;
Myocardial Infarction/metabolism*
;
Myocardial Ischemia
;
Myocardial Reperfusion Injury/metabolism*
;
Myocardium
;
Rats
3.Assessment of Myocardial Viability Using PET.
Korean Journal of Nuclear Medicine 2005;39(2):133-140
The potential for recovery of left ventricular dysfunction after myocardial revascularization represents a practical clinical definition for myocardial viability. The evaluation of viable myocardium in patients with severe global left ventricular dysfunction due to coronary artery disease and with regional dysfunction after acute myocardial infarction is an important issue whether left ventricular dysfunction may be reversible or irreversible after therapy. If the dysfunction is due to stunning or hibernation, functional improvement is observed. but stunned myocardium may recover of dysfunction with no revascularization. Hibernation is chronic process due to chronic reduction in the resting myocardial blood flow. There are two types of myocardial hibernation: "functional hibernation" with preserved contractile reserve and "structural hibernation" without contractile reserve in segments with preserved glucose metabolism. This review focus on the application of F-18 FDG and other radionuclides to evaluate myocardial viability. In addition the factors influencing predictive value of FDG imaging for evaluating viability and the different criteria for viability are also reviewed.
Coronary Artery Disease
;
Glucose
;
Hibernation
;
Humans
;
Metabolism
;
Myocardial Infarction
;
Myocardial Revascularization
;
Myocardial Stunning
;
Myocardium
;
Radioisotopes
;
Ventricular Dysfunction, Left
5.The expression of calcium-sensing receptor in rats with acute myocardial infarction and its effect on cells apoptosis.
Hui YUAN ; Guo-Hong YANG ; Shu LI ; Li LI ; Gao-Chen SONG ; Chang-Qing XU ; Jian SUN
Chinese Journal of Applied Physiology 2019;35(3):268-272
OBJECTIVE:
To investigate the change of calcium sensing receptor (CaSR) expression at different time in rat tissue with acute myocardial infarction (AMI) and its effect on cardiomyocyte apoptosis.
METHODS:
The healthy Wistar rats were randomly divided into Sham and AMI groups, the rat myocardial infarction model was established by ligating left anterior descending coronary artery. The changes of cardiac morphology and hemodynamics were detected at 1, 2 and 4 weeks,respectively. The expressions of CaSR mRNA and protein in myocardial tissue were detected by RT-PCR and Western blot, respectively. The expressions of Bax, Bcl-2, caspase-3 and caspase-9 proteins were detected by Western blot. The serum levels of lactate dehydrogenase (LDH), creatine kinase (CK) activity and cardiac troponin (cTnT) were determined. The apoptosis of cardiomyocytes were tested by TUNEL staining.
RESULTS:
Compared with the sham group, the expressions of CaSR mRNA and protein, the apoptosis index were increased significantly with the development of AMI (P<0.05). The ultrastructural damage of cardiomyocytes was serious; the levels of LVSP, +dp/dt and -dp/dt were decreased,while the levels of LVEDP was increased (P<0.05); In AMI group, the cTnT level, CK and LDH activities were all increased (P<0.05). With the development of myocardial infarction, the cTnT level and CK activity were gradually decreased, while the activity of LDH was not significantly changed. The expressions of promote apoptosis-related Bax, caspase-3 and caspase-9 were significantly increased, and the expression of inhibited apoptosis-related protein(factor)Bcl-2 was significantly decreased (P<0.05).
CONCLUSION
With the development of myocardial infarction,the expressions of CaSR mRNA and protein,the apoptosis index in rat myocardial tissue were increased with time prolongation after AMI. The increased expression of CaSR is involved in rat myocardial infarction, which is related with apoptosis.
Animals
;
Apoptosis
;
Myocardial Infarction
;
metabolism
;
Myocardium
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Wistar
;
Receptors, Calcium-Sensing
;
metabolism
6.Research updates of C1q/TNF related proteins (CTRPs) in inflammation-related diseases.
Ziyin ZHANGSUN ; Wangrui LEI ; Yanqing LIU ; Haoxiang XIAO ; Yang YANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):649-655
Inflammation underlies a wide variety of physiological and pathological processes, and plays a pivotal role in controlling pathogen infection. C1q/tumor necrosis factor (TNF) related proteins (CTRPs), a newly discovered adipokine family with conservative structure and wide distribution, has attracted increasing attention. The CTRP family consists of more than 15 members which fall into the characteristic C1q domain. Increasing studies have demonstrated that CTRPs are involved in the onset and development of inflammation and metabolism as well as related diseases, including myocardial infarction, sepsis and tumors. Here, we first clarified the characteristic domains of CTRPs, and then elucidated their roles in inflammatory-related diseases. Taken together, the information presented here provides new perspectives for therapeutic strategies to improve inflammatory and metabolic abnormalities.
Humans
;
Complement C1q/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Inflammation/metabolism*
;
Myocardial Infarction
7.Ischemia preconditioning attenuated myocardial ischemia via upregulating the expression of adiponectin in rat.
Hui WANG ; Jin-song CHENG ; Wen-jing WU ; Jian-yan WEN ; Chang-an YU ; Wen-qiang LIAO ; Wei KONG ; Yuan-nan KE ; Jin-gang ZHENG
Chinese Journal of Cardiology 2010;38(10):929-933
OBJECTIVETo investigate whether adiponectin plays a role in the protection of myocardium in the rat myocardial ischemia preconditioning (IPC) model.
METHODInfarct size was measured by Masson's Trichrome staining, the expression of protein and mRNA of adiponectin at 0, 6, 12 and 24 h after IPC was examined by immunohistochemistry and quantitative real time RT-PCR, plasma levels of adiponectin at above mentioned four time points after IPC were detected by ELISA in IPC and MI rats.
RESULTInfarct size was smaller in IPC than in MI rats (20% ± 2% vs. 31% ± 3%, P < 0.05). The expression of adiponectin mRNA at 6 h and 12 h after IPC was 2.2 and 2.1 times higher than in Sham rats at respective time points (P < 0.05). Immunohistochemistry staining evidenced increased adiponectin expression in the ischemic area and weak expression of adiponectin in non-ischemic area (P < 0.05). Compared to the sham group, the plasma level of adiponectin increased significantly at 0, 6 and 12 h after IPC (0 h: 7.40 ± 0.47 vs. 10.90 ± 1.74; 6 h: 8.18 ± 1.41 vs. 10.98 ± 1.74; 12 h: 6.97 ± 1.02 vs. 9.31 ± 0.96, P < 0.05).
CONCLUSIONIPC reduced infarction size, upregulated the myocardial expression of adiponectin at mRNA and protein levels, and increased plasma adiponectin concentration, suggesting that the adiponectin may play a critical role in the protective effect of IPC.
Adiponectin ; metabolism ; Animals ; Ischemic Preconditioning, Myocardial ; Male ; Myocardial Infarction ; metabolism ; prevention & control ; Myocardial Ischemia ; metabolism ; prevention & control ; Myocardium ; metabolism ; Rats ; Rats, Sprague-Dawley
8.The role of PEP-1-SOD1 fusion protein on ischemia-reperfusion injury in isolated perfused rat hearts..
Zun-Ping KE ; Jia-Ning WANG ; Jun-Ming TANG ; Jian-Ye YANG ; Yong-Zhang HUANG ; Ling-Yun GUO ; Fei ZHENG ; Xia KONG ; Lei WANG
Chinese Journal of Cardiology 2009;37(3):268-274
OBJECTIVEThe transduction efficiency of the purified PEP-1-SOD1 fusion protein and the effects of PEP-1-SOD1 fusion protein on ischemia reperfusion injury in the isolated perfused rat hearts were investigated.
METHODSThe constructed pET15b-SOD1 and pET15b-PEP-1-SOD1 were transformed into BL21 (DE3) for expression and purification of SOD1 and PEP-1-SOD1, respectively. Isolated perfused rat hearts were subjected to 60 min of global ischemia and 30 min of reperfusion and treated with vehicle, 100 micromol/L SOD1 and 25, 50, 100 micromol/L PEP-1-SOD1, respectively. The transduction efficiency was evaluated with immunofluorescent microscopy and Western blot. The enzyme activity of the transduced PEP-1-SOD1 was measured with commercial SOD detection kit. The MDA content in myocardial tissue and the CK activity in coronary exudate at 15 min after reperfusion were also measured. Cardiomyocyte apoptosis was detected with TUNEL. The infarct size was determined in isolated hearts 60 min after reperfusion with TTC staining.
RESULTSImmunofluorescent microscopy and Western blot demonstrated PEP-1-SOD1 was transduced into myocardial tissue in a dose-dependent manner, whereas SOD1 could not be detected in SOD1 group. SOD activity in control, SOD1 group, 25, 50, 100 micromol/L PEP-1-SOD1 groups was (10.06 +/- 0.77) U/mg prot, (10.59 +/- 0.71) U/mg prot, (32.29 +/- 1.42) U/mg prot, (43.16 +/- 1.16) U/mg prot, (55.14 +/- 1.59) U/mg prot, respectively. MDA content in corresponding groups was (1.48 +/- 0.19) nmol/mg prot, (1.39 +/- 0.11) nmol/mg prot, (1.01 +/- 0.14) nmol/mg prot, (0.73 +/- 0.13) nmol/mg prot, (0.50 +/- 0.06) nmol/mg prot, respectively. CK activity in corresponding groups was (1.73 +/- 0.58) U/mg prot,(1.68 +/- 0.14) U/mg prot,(1.40 +/- 0.28) U/mg prot,(0.97 +/- 0.39) U/mg prot, (0.61 +/- 0.56) U/mg prot, respectively. Cardiomyocyte apoptotic index in corresponding groups was (17.25 +/- 0.75)%, (16.63 +/- 1.07)%, (11.50 +/- 0.57) U/mg prot, (6.50 +/- 0.63) U/mg prot, (4.13 +/- 0.52)%, repectively. The percentage of myocardial infarction area was (55.13 +/- 2.18)%, (52.13 +/- 2.59)%, (33.88 +/- 2.06)%, (25.50 +/- 2.16)%, (15.38 +/- 1.14)%, respectively. Compared with control group and SOD1 group, all P < 0.01 These results demonstrated the enzyme activity of the transduced PEP-1-SOD1 was significantly increased in a dose-dependent manner and the MDA content, CK activity, the cardiomyocyte apoptotic index and the infarct size was decreased siginificantly in PEP-1-SOD1 pretreatment groups compared with SOD1 group.
CONCLUSIONThe native, biologically active form of PEP-SOD1 fusion protein could be effectively transduced into the isolated rat hearts subjecting ischemia reperfusion injury in a dose-dependent manner. The transduced PEP-1-SOD1 has protective effects on ischemia reperfusion injury in the isolated rat hearts.
Animals ; Apoptosis ; drug effects ; Heart ; Myocardial Infarction ; Myocardial Reperfusion Injury ; metabolism ; Myocardium ; metabolism ; Rats ; Rats, Sprague-Dawley ; Reperfusion Injury
9.Role of gap junction in ischemic preconditioning.
De-chun SU ; Zhi-wen CHANG ; Shu-ying FAN
Chinese Journal of Cardiology 2006;34(8):690-694
OBJECTIVETo investigate the role of gap junction in ischemic preconditioning (IPC).
METHODSSprague-Dawley rats were subjected to a 30 min coronary artery occlusion followed by 4 h of reperfusion (I/R). Rats were divided into seven groups: I/R, IPC/R, IPC/R + 5-hydroxydecanoic acid (mitochondrial ATP sensitive potassium channel antagonist), I/R + diazoxide (mitochondrial ATP sensitive potassium channel agonist), I/R + 5-hydroxydecanoic acid + diazoxide, I/R + 18beta-glycyrrhetinic acid (gap junction blocker) and I/R + 18beta-glycyrrhetinic acid + 5-hydroxydecanoic acid. Hemodynamics and myocardial infarct size were measured and connexin43 phosphorylation and subcellular distribution were determined by quantitative immunoblotting and confocal immunofluorescence.
RESULTSInfarct size was reduced in IPC/R, I/R + diazoxide and I/R + 18beta-glycyrrhetinic acid group (13.34% +/- 7.87%, 11.02% +/- 2.24%, and 15.03% +/- 11.35%, respectively; P < 0.001 vs. I/R group: 45.81% +/- 7.91%). 5-hydroxydecanoic acid abolished the cardioprotective effects of IPC and diazoxide (46.57% +/- 5.36% and 47.36% +/- 3.17%; P > 0.05 vs. I/R) but not the effects of glycyrrhetinic acid (14.60% +/- 7.36%; P < 0.001 vs. I/R). Phosphorylation of connexin43 was significantly increased, dephosphorylation and connexin43 intracellular redistribution significantly decreased (Cx43 size in the cellular membrane 1.00% +/- 0.35% and 0.83% +/- 0.31%, P < 0.001 vs. I/R: 0.19% +/- 0.06%) by IPC and diazoxide and these effects could be abolished by 5-hydroxydecanoic acid.
CONCLUSIONIschemic preconditioning could reduce myocardial infarction size by activating mitochondrial ATP sensitive potassium channel and modulating connexin43 phosphorylation and internalization.
Animals ; Connexin 43 ; metabolism ; Gap Junctions ; physiology ; Ischemic Preconditioning, Myocardial ; Male ; Myocardial Infarction ; metabolism ; pathology ; Phosphorylation ; Rats ; Rats, Sprague-Dawley