2.Evaluation of the left ventricular remodeling in patients with myocardial infarction after revascularization with intravenous real-time myocardial contrast echocardiography.
Xiaojun, BI ; Youbin, DENG ; Weihui, SHENTU ; Li, XIONG ; Yun, ZHANG ; Fen, YU ; Runqing, HUANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2008;28(3):287-90
In order to evaluate the left ventricular remodeling in patients with myocardial infarction after revascularization with intravenous real-time myocardial contrast echocardiography (RT-MCE), intravenous RT-MCE was performed on 20 patients with myocardial infarction before coronary revascularization. Follow-up echocardiography was performed 3 months after coronary revascularization. Segmental wall motion was assessed using 18-segment LV model and classified as normal, hypokinesis, akinesis and dyskinesis. Myocardial perfusion was assessed by visual interpretation and divided into 3 conditions: homogeneous opacification=1; partial or reduced opaciflcation or subendocardial contrast defect=2; constrast defect=3. Myocardial perfusion score index (MPSI) was calculated by dividing the total sum of contrast score by the total number of segments with abnormal wall motion. Twenty patients were classified into 2 groups according to the MPSI: MPSI=1.5 as good myocardial perfusion, MPSI>1.5 as poor myocardial perfusion. To assess the left ventricular remodeling, the following comparisons were carried out: (1) Comparisons of left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV) and left ventricular end-diastolic volume (LVEDV) before and 3 months after revascularization in two groups; (2) Comparisons of LVEF, LVESV and LVEDV pre-revascularization between two groups and comparisons of these 3 months post-revascularization between two groups; (3) Comparisons of the differences in LVEF, LVESV and LVEDV between 3 months post-and pre-revascularization (DeltaLVEF, DeltaLVESV and DeltaLVEDV) between two groups; (4) The linear regression analysis between DeltaLVEF, DeltaLVESV, DeltaLVEDV and MPSI. The results showed that the LVEF obtained 3 months after revascularization in patients with MPSI>1.5 was obviously lower than that in those with MPSI=1.5. The LVEDV obtained 3 months post-revascularization in patients with MPSI>1.5 was obviously larger than that in those with MPSI=1.5 (P=0.002 and 0.04). The differences in DeltaLVEF and DeltaLVEDV between patients with MPSI>1.5 and those with MPSI=1.5 were significant (P=0.002 and 0.001, respectively). Linear regression analysis revealed that MPSI had a negative correlation with DeltaLVEF and a positive correlation with DeltaLVESV, DeltaLVEDV (P=0.004, 0.008, and 0.016, respectively). It was concluded that RT-MCE could accurately evaluate the left ventricular remodeling in patients with myocardial infarction after revascularization.
Echocardiography/*methods
;
Infusions, Intravenous
;
Myocardial Infarction/*diagnosis
;
Myocardial Infarction/pathology
;
Myocardial Infarction/*ultrasonography
;
Myocardial Reperfusion
;
Myocardium/*pathology
;
Perfusion
;
Regression Analysis
;
Time Factors
;
Ventricular Remodeling
3.Research Advances in Sympathetic Remodeling after Myocardial Infarction and Its Significance in Forensic Science.
Tian-shui YU ; Lu-zou GE ; Ji-min CAO
Journal of Forensic Medicine 2019;35(1):68-73
Sympathetic remodeling after myocardial infarction is presented as denervation, sympathetic nerve sprouting and sympathetic hyperinnervation, and is closely related to ventricular tachyarrhythmias and even sudden cardiac death at convalescence in patients with myocardial infarction. This article reviews the anatomic structure, morphology and functional remodeling of cardiac sympathetic nerve, as well as its role in healed myocardial infarction identification, which may provide references for forensic research.
Atrial Remodeling
;
Forensic Sciences
;
Heart
;
Humans
;
Myocardial Infarction/pathology*
4.The changes of potassium currents in rabbit ventricle with healed myocardial infarction.
Nian, LIU ; Huiyan, NIU ; Yang, LI ; Cuntai, ZHANG ; Qiang, ZHOU ; Yanfei, RUAN ; Jun, PU ; Zaiying, LU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2004;24(2):128-31
To elucidate the mechanism of arrhythmia in healed myocardial infarction (HMI), the changes of action potential duration (APD), transient outward potassium current (Ito), delayed rectifier potassium current (IK) and inward rectifier potassium current (IK1) of left ventricular myocytes in non-infarcted zone of HMI were investigated. Rabbits were randomly assigned into two groups: HMI group, in which animals were subjected to thoracotomy and ligation of the circumflex coronary and sham-operated group, in which rabbits underwent thoracotomy but no conorary ligation. 3 months after the operation, the whole myocyte patch clamp technique was used to record APD, Ito, IK, and IK1 of ventricular myocytes in non-infarcted zone. Our results showed that the membrane capacitance was larger in HMI group than in sham-operated group. Action potential duration was significantly lengthened in HMI group and early afterdepolarization (EAD) appeared in HMI group. The densities of Ito, I(K, tail), and IK1 were reduced significantly in HMI group, from 6.72 +/- 0.42 pA/pF, 1.54 +/- 0.13 pA/pF and 25.6 +/- 2.6 pA/pF in sham-operated group to 4.03 +/- 0.33 pA/pF, 1.14 +/- 0.11 pA/pF and 17.6 +/- 2.3 pA/pF, respectively. It is concluded that the reduced densities of Ito, I(K, tail) and IK1 in ventricular myocytes of non-infarcted zone in HMI were responsible for the prolongation of APD and the presentation of EAD which played important roles in the development of malignant arrhythmia in HMI.
Action Potentials
;
Arrhythmia/*etiology
;
Heart Ventricles/metabolism
;
Myocardial Infarction/complications
;
Myocardial Infarction/metabolism
;
Myocardial Infarction/*pathology
;
Myocytes, Cardiac/*cytology
;
Patch-Clamp Techniques
;
Potassium Channels/*metabolism
5.Acute myocardial infarction due to myocardial bridge.
Zhao-Feng LI ; Shu-Guang YANG ; Jun-Bo GE
Chinese Medical Journal 2012;125(19):3589-3590
6.Sudden Death Caused by Anomalous Coronary Origin: A Case Report and Clinical Review.
Bong Woo LEE ; Ho LEE ; Joon Gseok SEO
Korean Journal of Legal Medicine 2002;26(1):91-94
Although coronary atherosclerosis occupies more than 90% of myocardial infarctions, anomalous coronary arteries are a potential cause of myocardial ischemia resulting in arrhythmia, angina, infarction, and sudden death. A medico-legal autopsy conducted on a 22 year-old healthy man who died suddenly after exercise, revealed that the right coronary artery ostium was situated higher the aortic ridge (sinotubular junction) with acute downward angulation of the proximal right coronary artery. There was no evidence of any other disease process. Coronary artery anomalies may be overlooked or misssed by the examining forensic pathologist. We described the pathology of this condition and briefly reviewed.
Arrhythmias, Cardiac
;
Autopsy
;
Coronary Artery Disease
;
Coronary Vessels
;
Death, Sudden*
;
Humans
;
Infarction
;
Myocardial Infarction
;
Myocardial Ischemia
;
Pathology
;
Young Adult
7.Evaluation of myocardial viability after myocardial infarction with intravenous real-time myocardial contrast echocardiography.
Weihui, SHENTU ; Youbin, DENG ; Runqing, HUANG ; Peng, LI ; Xiang, WEI ; Haoyi, YANG ; Yun, ZHANG ; Li, XIONG ; Fen, YU ; Yuhan, WU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2008;28(3):291-4
The myocardial viability after myocardial infarction was evaluated by intravenous myocardial contrast echocardiography. Intravenous real-time myocardial contrast echocardiography was performed on 18 patients with myocardial infarction before coronary revascularization. Follow-up echocardiography was performed 3 months after coronary revascularization. Segmental wall motion was assessed using 18-segment LV model and classified as normal, hypokinesis, akinesis and dyskinesis. Viable myocardium was defined by evident improvement of segmental wall motion 3 months after coronary revascularization. Myocardial perfusion was assessed by visual interpretation and divided into 3 conditions: homogeneous opacification; partial or reduced opaciflcation or subendocardial contrast defect; contrast defect. The former two conditions were used as the standard to define the viable myocardium. The results showed that 109 abnormal wall motion segments were detected among 18 patients with myocardial infarction, including 47 segments of hypokinesis, 56 segments of akinesis and 6 segments of dyskinesis. The wall motion of 2 segments with hypokinesis before coronary revascularization which showed homogeneous opacification, 14 of 24 segments with hypokinese and 20 of 24 segments with akinese before coronary revascularization which showed partial or reduced opaciflcation or subendocardial contrast defect was improved 3 months after coronary revascularization. In our study, the sensitivity and specificity of evaluation of myocardial viability after myocardial infarction by intravenous real-time myocardial contrast echocardiography were 94.7% and 78.9%, respectively. It was concluded that intravenous real-time myocardial contrast echocardiography could accurately evaluate myocardial viability after myocardial infarction.
Angioplasty, Transluminal, Percutaneous Coronary
;
Cell Survival
;
Coronary Artery Bypass
;
Echocardiography/*methods
;
Models, Statistical
;
Myocardial Infarction/*pathology
;
Myocardial Infarction/*ultrasonography
;
Myocardial Revascularization
;
Myocardium/*pathology
;
Perfusion
;
Time Factors
8.Idiopathic arterial calcification of infancy:report of a case.
Feng-lan GAO ; Chun-ling LIU ; Yin-po ZHANG ; Yan-xin ZHANG
Chinese Journal of Pathology 2013;42(11):771-772
Autopsy
;
Female
;
Heart Failure
;
etiology
;
pathology
;
Humans
;
Infant
;
Myocardial Infarction
;
etiology
;
pathology
;
Vascular Calcification
;
complications
;
pathology
10.Flow cytometric analysis of circulating microvesicles derived from myocardial Ischemic preconditioning and cardioprotection of Ischemia/reperfusion Injury in rats.
Miao LIU ; Yi-lu WANG ; Man SHANG ; Yao WANG ; Qi ZHANG ; Shao-xun WANG ; Su WEI ; Kun- wei ZHANG ; Chao LIU ; Yan-na WU ; Ming-lin LIU ; Jun-qiu SONG ; Yan-xia LIU
Chinese Journal of Applied Physiology 2015;31(6):524-531
OBJECTIVETo establish a flow cytometric method to detect the alteration of phenotypes and concentration of circulating microvesicles (MVs) from myocardial ischemic preconditioning (IPC) treated rats (IPC-MVs), and to investigate the effects of IPC-MVs on ischemia/reperfusion (I/R) injury in rats.
METHODSMyocardial IPC was elicited by three.cycles of 5-min ischemia and 5-min reperfusion of the left anterior descending (LAD) coronary artery. Platelet-free plasma (PFP) was isolated through two steps of centrifugation at room temperature from the peripheral blood, and IPC-MVs were isolated by ultracentrifugation from PFR PFP was incubated with anti-CD61, anti-CD144, anti-CD45 and anti-Erythroid Cells, and added 1, 2 µm latex beads to calibrate and absolutely count by flow cytometry. For functional research, I/R injury was induced by 30-min ischemia and 120-min reperfusion of LAD. IPC-MVs 7 mg/kg were infused via the femoral vein in myocardial I/R injured rats. Mean arterial blood pressure (MAP), heart rate (HR) and ST-segment of electro-cardiogram (ECG) were monitored throughout the experiment. Changes of myocardial morphology were observed after hematoxylin-eosin (HE) staining. The activity of plasma lactate dehydrogenase (LDH) was tested by Microplate Reader. Myocardial infarct size was measured by TTC staining.
RESULTSTotal IPC-MVs and different phenotypes, including platelet-derived MVs (PMVs), endothelial cell-derived MVs (EMVs), leucocyte-derived MVs (LMVs) and erythrocyte-derived MVs (RMVs) were all isolated which were identified membrane vesicles (<1 Vm) with corresponding antibody positive. The numbers of PMVs, EMVs and RMVs were significantly increased in circulation of IPC treated rats (P<0.05, respectively). In addition, at the end of 120-min reperfusion in I/R injured rats, IPC-MVs markedly increased HR (P<0.01), decreased ST-segment and LDH activity (P < 0.05, P < 0.01). The damage of myocardium was obviously alleviated and myocardial infarct size was significantly lowered after IPC-MVs treatment (P < 0.01).
CONCLUSIONThe method of flow cytometry was successfully established to detect the phenotypes and concentration alteration of IPC-MVs, including PMVs, EMVs, LMVs and RMVs. Furthermore, circulating IPC-MVs protected myocardium against I/R injury in rats.
Animals ; Cell-Derived Microparticles ; metabolism ; Coronary Vessels ; pathology ; Flow Cytometry ; Heart Rate ; Ischemic Preconditioning, Myocardial ; Myocardial Infarction ; physiopathology ; Myocardial Reperfusion Injury ; physiopathology ; Myocardium ; pathology ; Phenotype ; Rats