1.Analysis of the clinical, electrophysiological and genetic features of a family affected with hereditary neuropathy with liability to pressure palsies.
Chinese Journal of Medical Genetics 2015;32(1):31-35
OBJECTIVETo delineate the clinical, electrophysiological and genetics features of a family where 4 members were affected with hereditary neuropathy with liability to pressure palsies (HNPP).
METHODSClinical features of the 4 patients were summarized. Electrophysiological examination and genetic analysis were carried out.
RESULTSAll of the patients showed recurrent motor and sensory disturbances after minor traction or constriction. Electrophysiology study revealed that the prolonged latency and reduced conduction velocity of peripheral nerve were general and with multiple sites of affection. The nerve locations liable to entrapment showed conduction block. A deletion mutation of peripheral myelin protein 22 (PMP22) gene was identified by genetic analysis.
CONCLUSIONHNPP usually affects areas where nerves are liable to entrapment, and presents with motor and sensory disturbances of the innervated areas. Electrophysiological study reveals general nervous demyelination. Genetic analysis can clarify the diagnosis of HNPP.
Adult ; Arthrogryposis ; genetics ; physiopathology ; Hereditary Sensory and Motor Neuropathy ; genetics ; physiopathology ; Humans ; Male ; Myelin Proteins ; genetics ; Neural Conduction
2.Knocking-down of Nogo-A gene expression in PC12 cell line by plasmid-based RNAi.
Nanxiang, XIONG ; Jianzhang, PU ; Hongyang, ZHAO ; Qun, SU ; Xiaobing, JIANG ; Dongxiao, YAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2007;27(4):433-6
To study the inhibitory effect of Nogo-A shRNA on cell line PC12, the Nogo-A shRNA (short hairpin RNA, or shRNA) was designed and synthesized. The annealed shRNA template was inserted into plasmid pGenesil-1 containing enhanced green fluorescent protein (EGFP) gene by gene cloning technique to generate eukaryotic expression vector. The recombinant plasmid was transfected into PC12 cells by lipofecamine2000 and the mRNA and protein expression level of Nogo-A gene was detected by RT-PCR and Western blotting 48 h after the transfection. Gene sequencing showed that that the Nogo-A shRNA eukaryotic expression vector was successfully constructed. No significant change was found in the Nogo-A mRNA and protein expression level in empty vector-transfected group as compared with controls (P>0.05), while the expression level in shRNA-transfected group decreased significantly (P<0.05). It is concluded that the pGenesil-1/Nogo-AshRNA recombinant plasmid can effectively suppress the expression of Nogo-A gene in PC12 cells.
Cloning, Molecular
;
Gene Knockdown Techniques/*methods
;
Genetic Vectors
;
Green Fluorescent Proteins/genetics
;
Myelin Proteins/*genetics
;
Myelin Proteins/metabolism
;
PC12 Cells
;
Plasmids
;
RNA Interference
;
RNA, Messenger/genetics
;
RNA, Messenger/metabolism
;
RNA, Small Interfering
;
Transfection
3.PMP22 mutation of an infant-onset Charcot-Marie-Tooth disease family.
Jun-Wei XING ; Ya-Hong LIU ; Bilal Haider SHAMSI ; Xiao-Hong LIU ; Lu TAN ; Man XU
Chinese Journal of Contemporary Pediatrics 2011;13(10):799-803
OBJECTIVETo study the mutation of PMP22 gene of an early-onset family with Charcot-Marie-Tooth disease (CMT) and the genetic features of the disease.
METHODSTwo patients with CMT, fifteen unaffected members in the family and 20 healthy controls were enrolled. STR-PCR and gene scanning were used to detect PMP22 duplication mutation.
RESULTSThe mutations of PMP22 were found in the two patients and other five unaffected members in the family. The mutations were located in the STR locus D17S921 in 5 cases and in the STR locus D17S4A in 2 cases. The other members in the family and 20 healthy controls did not show the mutations of PMP22.
CONCLUSIONSThe gene causing CMT in the family is found in the 17p11.2-p12 region containing PMP22 gene duplication mutation, resulting in the subtype CMT1A.
Charcot-Marie-Tooth Disease ; genetics ; Child ; Child, Preschool ; Chromosomes, Human, Pair 17 ; Female ; Humans ; Male ; Mutation ; Myelin Proteins ; genetics
4.Inhibition of Nogo expression to promote repair after spinal cord injury.
Hong-hui SUN ; Feng GAO ; Bin LIU ; Hai-tao YU ; Ning KONG ; Guo-min LIU
Chinese Medical Journal 2012;125(22):4044-4048
BACKGROUNDOne of the reasons for poor neuroregeneration after central nervous system injury is the presence of inhibitory factors such as Nogo. Here, we tested the inhibition of Nogo by RNA interference both in vitro and in vivo, using recombinant adenovirus-mediated transfection of short hairpin RNAs, to explore a new method of treatment for spinal cord injury.
METHODSWe designed and cloned two Nogo-specific short hairpin RNAs and an unrelated short hairpin RNA, packaged the clones into adenovirus, and amplified the recombinant virus in 293 cells. We then tested the inhibition of Nogo expression both in vitro in adenovirus-transfected oligodendrocytes and in vivo in spinal cord tissue from adenovirus-transfected spinal cord injury model rats. We tested Nogo expression at the mRNA level by reverse-transcription PCR and at the protein level by Western blotting and immunohistochemistry.
RESULTSIn vitro, the two specific Nogo short hairpin RNAs decreased Nogo mRNA expression by 51% and 49%, respectively, compared with Nogo expression in cells transfected with the unrelated control small hairpin RNA (P < 0.005). Similarly, Nogo protein expression decreased by 50% and 48%, respectively (P < 0.005). In vivo, in spinal cord injury model rats, the two specific Nogo short hairpin RNAs decreased Nogo mRNA expression by 45% and 40%, respectively, compared with Nogo expression in spinal cord injury model rats transfected with the unrelated control short hairpin RNA (P < 0.005). The Nogo protein level was similarly decreased.
CONCLUSIONSWe were successful in specifically downregulating Nogo at the mRNA and protein levels by adenovirus-mediated delivery of short hairpin RNAs, both in vitro and in vivo. This confirms the effectiveness of RNA interference for the inhibition of Nogo gene expression and the efficiency of using adenovirus for delivery. Thus gene therapy may be an effective treatment for spinal cord injury.
Adenoviridae ; genetics ; Animals ; Blotting, Western ; Humans ; Immunohistochemistry ; Myelin Proteins ; genetics ; metabolism ; Nogo Proteins ; RNA Interference ; RNA, Small Interfering ; genetics ; Rats ; Rats, Sprague-Dawley ; Spinal Cord Injuries ; therapy
5.Detection of duplications or deletions of the PMP22 gene using real-time quantitative PCR.
Fu-feng ZHANG ; Bei-sha TANG ; Yan SHEN ; Guo-hua ZHAO ; Kun XIA ; Yi-qiang ZHAO ; Biao CHEN ; Cheng ZHANG ; Qian PAN ; Fang CAI ; Xiao-min LIU ; Wei LUO ; Ru-xu ZHANG ; Peng GUO
Chinese Journal of Medical Genetics 2005;22(5):537-540
OBJECTIVETo detect the duplication or deletion of peripheral myelin protein 22(PMP22) gene in Chinese patients with Charcot-Marie-Tooth disease(CMT) or hereditary neuropathy with liability to pressure palsies(HNPP) using real-time quantitative polymerase chain reaction.
METHODSDuplications or deletions of PMP22 gene were detected in 113 CMT cases, 4 HNPP cases and 50 normal controls by using real-time quantitative PCR.
RESULTSThirty-six of 113 CMT cases had the PMP22 duplication, 4 HNPP cases had the PMP22 deletion. No duplication or deletion was found in 50 normal controls.
CONCLUSIONThe PMP22 duplication rate in Chinese patients with CMT is 31.9%(36/113). PMP22 deletion is the common cause of HNPP.
Adult ; Charcot-Marie-Tooth Disease ; genetics ; Female ; Gene Duplication ; Humans ; Male ; Myelin Proteins ; genetics ; Polymerase Chain Reaction ; methods ; Sequence Deletion ; Young Adult
6.The Role of Endothelin Receptor A during Myelination of Developing Oligodendrocytes.
Kyung Jin JUNG ; Dong Woon KIM ; Ha Na LEE ; Young Sook LEE ; Sung Joong LEE ; Jeong Hwan CHE ; Young Ho LEE ; Byeong Cheol KANG
Journal of Korean Medical Science 2011;26(1):92-99
Endothelin (ET)-1 and its receptors (ETA and ETB receptor) are present in the central nervous system. ET exerts biological effects on gliogenesis and glial cell functions. In order to define a possible mechanism of ETA receptor signaling, the distribution of the ETA receptor in developing oligodendrocytes and the effects of ET-1 on the myelination of oligodendrocytes were examined. ETA receptor immunoreactivity was confined to the perivascular elements of the blood vessels during early postnatal development. However later in development, ETA receptor immunoreactivity was no longer observed in the vessels but became localized to the myelinating oligodendrocytes of the primitive corpus callosum of the white matter, apart from the vessels. ET-1 induced myelin basic protein (MBP) in primary oligodendrocyte precursor cell culture though the ETA receptor and was blocked by an ETA receptor antagonist. In addition, ET-1 evoked the release of Ca2+ which is a central regulator of oligodendrocyte differentiation. Our results provide a link between ET-1 and its ETA receptor and myelination during oligodendrocyte differentiation.
Animals
;
Brain/pathology
;
Calcium/metabolism
;
Calcium Signaling
;
Cells, Cultured
;
Endothelin-1/metabolism/physiology
;
Mice
;
Mice, Inbred ICR
;
Myelin Basic Proteins/genetics/metabolism
;
Myelin Sheath/*physiology
;
Oligodendroglia/cytology/*metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, Endothelin A/metabolism/*physiology
7.A new mutation in the GJB1 gene of a Chinese family with Charcot-Marie-Tooth disease associated with vocal cord paresis.
Qing-hua LI ; Kai-xiang LIU ; Jun-lin FENG ; Ai-yuan ZENG ; Hao LI ; Lan WU ; Yong-gang TANG ; Mei-lin CHEN ; Xiao-hui LIN ; Jing-zi JIANG
Chinese Journal of Medical Genetics 2010;27(5):497-500
OBJECTIVETo report an X-linked dominant Charcot-Marie-Tooth disease (CMTX) Chinese family with vocal cord paresis and to identify the mutation of gap junction protein beta 1 gene (GJB1).
METHODSPart of the family members with dysphagia, dysphonia and lethal respiratory failure were studied through flexible laryngoscope, clinical, brain MRI and electrophysiological examinations. After excluding large fragment tandem duplication containing peripheral myelin protein 22 gene (PMP22), direct sequencing was performed to analyze the mutation of the GJB1 gene in 5 patients including the proband, 5 unaffected family members and 50 unrelated healthy individuals.
RESULTSEight members spanning 3 generations in this family were affected with CMTX characterized by progressive atrophy and weakness of the anterior tibial and peroneal muscles, especially in the proband. Vocal cord paresis was observed through flexible laryngoscope in total of 4 affected members with dysarthria and dysphagia, 2 of them died of severe respiratory failure due to complete bilateral vocal cord involvement. Normal brain MRI was observed in the proband. The electrophysiological data showed predominant demyelization involving the motor and sensory nerves in the proband. DNA sequencing revealed a de novo c.186 C>G missense mutation in exon 2 of the GJB1 gene, the mutation cosegregated with phenotype.
CONCLUSIONRespiratory failure associated with vocal cord involvement may be a rare and severe symptom in CMTX. The present report provides further evidence for clinical and genetic heterogeneity in the X-linked Charcot-Marie-Tooth disease.
Adolescent ; Adult ; Asian Continental Ancestry Group ; genetics ; Base Sequence ; Case-Control Studies ; Charcot-Marie-Tooth Disease ; genetics ; Connexins ; genetics ; Female ; Humans ; Male ; Molecular Sequence Data ; Mutation, Missense ; Myelin Proteins ; genetics ; Pedigree ; Vocal Cord Paralysis ; genetics ; Young Adult
8.Functional interaction of the C-terminal of Nogo protein with connexin 26 and the expression of Nogo's mRNA in the murine inner ear.
Zi-an XIAO ; Ding-hua XIE ; Peng HU ; Kun XIA ; Fang CAI ; Qian PAN
Chinese Journal of Medical Genetics 2006;23(5):492-496
OBJECTIVETo screen and identify the proteins that interact with connexin 26 (CX26) and to analyze the expressions of these proteins in cochlea so as to explore the proteins that relate to the trafficking, assembly, localizing and gap junction functions of CX26.
METHODSThe whole coding region of GJB2 (CX26) gene was amplified from normal human genomic DNA by polymerase chain reaction (PCR) and then directionally subcloned into the vector pGBKT7 plasmid of the Match Maker Ga14 Two-Hybrid System 3 as a target to screen the interactive proteins of CX26 from the human fetal brain cDNA library by the yeast two hybrid technique. The false positive clones were discarded from the preys by repeated yeast two hybrid method between CX26 and everyone of the preys respectively. The DNAs of the insert of the identified positive clone were sequenced and BLAST analyzed against the GenBank. Lastly, the mRNA of the gene encoding the identified protein was analyzed in the murine inner ear by reverse transcription-polymerase chain reaction (RT-PCR).
RESULTSThe insert of one positive clone contained 867 bp with the former 525 bp being coding region. The DNA sequence and the open reading frame of the insert were identical to the 525 bp before the stop codes (including the stop codes) and the 238 bp after the stop codes of RTN4 gene which encoded Nogo protein. And the 174 amino acid residues encoded by the insert were those of the C-terminal of Nogo protein: Nogo-A, Nogo-B and Nogo-C. RTN4 mRNA expressed in the murine inner ear was confirmed by RT-PCR method.
CONCLUSIONThe C-terminal of Nogo protein interacts with CX26. Nogo protein expresses in the inner ear and may take part in the trafficking of CX26 or CX26 gap junction function.
Animals ; Base Sequence ; Connexin 26 ; Connexins ; genetics ; metabolism ; Ear, Inner ; metabolism ; Gene Expression ; Humans ; Mice ; Molecular Sequence Data ; Myelin Proteins ; genetics ; metabolism ; Nogo Proteins ; Protein Binding ; RNA, Messenger ; genetics ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Two-Hybrid System Techniques
9.Silenced NgR gene expression by RNA interference to promote rats facial nerve regeneration in vitro.
Yong SHI ; Liang ZHOU ; Jie TIAN ; Yang WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2014;28(10):728-730
OBJECTIVE:
To suppress NgR gene expression in neural stem cells and observe differentiation of neural stem cells in vitro after interfered which provide nutritional support for the facial nerve repair in vivo.
METHOD:
PCR amplification, restriction endonuclease digestion, T4DNA ligase connections were used to connected NgR with rector pGCsi, and constructed recombinant vector (NgR shRNA). Lipofectamine 2000 were used to transfect the NSC. The expression of NgR was examined by Western Blot. The proportion of neural stem cells transformed into neurons after transfection was tested by Immunocytochemistry. Neural stem cells were planted in PLGA tubes after transfected, and were scanned by electron microscopy.
RESULT:
NgR shRNA plasmid was constructed and infected neural stem cells successfully. Western Blot showed that the expression of NgR decreased in neural stem cells after interference. Immunocytochemistry showed that the rate of the neural stem cells transformed into neurons after interfered was significantly higher (P < 0.01).
CONCLUSION
Neural stem cells were transformed into neurons after NgR shRNA plasmid infected neural stem cells, which promoted axonal regeneration more effectively and provided a efficient and stable gene platform for facial nerve repair.
Animals
;
Cell Differentiation
;
Cells, Cultured
;
Facial Nerve
;
surgery
;
GPI-Linked Proteins
;
genetics
;
metabolism
;
Myelin Proteins
;
genetics
;
metabolism
;
Neural Stem Cells
;
cytology
;
metabolism
;
Nogo Receptor 1
;
RNA Interference
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Cell Surface
;
genetics
;
metabolism
10.AATYK is a Novel Regulator of Oligodendrocyte Differentiation and Myelination.
Chunxia JIANG ; Wanqing YANG ; Zhihong FAN ; Peng TENG ; Ruyi MEI ; Junlin YANG ; Aifen YANG ; Mengsheng QIU ; Xiaofeng ZHAO
Neuroscience Bulletin 2018;34(3):527-533
Oligodendrocytes (OLs) are myelinating glial cells that form myelin sheaths around axons to ensure rapid and focal conduction of action potentials. Here, we found that an axonal outgrowth regulatory molecule, AATYK (apoptosis-associated tyrosine kinase), was up-regulated with OL differentiation and remyelination. We therefore studied its role in OL differentiation. The results showed that AATYK knockdown inhibited OL differentiation and the expression of myelin genes in vitro. Moreover, AATYK-deficiency maintained the proliferation status of OLs but did not affect their survival. Thus, AATYK is essential for the differentiation of OLs.
Animals
;
Animals, Newborn
;
Apoptosis Regulatory Proteins
;
genetics
;
metabolism
;
Cell Differentiation
;
drug effects
;
physiology
;
Cell Proliferation
;
drug effects
;
genetics
;
Cells, Cultured
;
Cuprizone
;
toxicity
;
Demyelinating Diseases
;
chemically induced
;
metabolism
;
pathology
;
Embryo, Mammalian
;
Gene Expression Regulation, Developmental
;
genetics
;
Ki-67 Antigen
;
metabolism
;
Mice
;
Mice, Inbred C57BL
;
Myelin Basic Protein
;
metabolism
;
Myelin Proteolipid Protein
;
metabolism
;
Myelin Sheath
;
drug effects
;
metabolism
;
Oligodendroglia
;
drug effects
;
metabolism
;
Protein-Tyrosine Kinases
;
genetics
;
metabolism
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley