1.Cytoadherence and Severe Malaria
Alister G Craig ; Mohd Fadzli Mustaffa Khairul ; Pradeep R Patil
Malaysian Journal of Medical Sciences 2012;19(2):5-18
Malaria is a disease that causes enormous human morbidity and mortality. One feature of mature Plasmodium falciparum-infected erythrocytes leading to the development of severe malaria is thought to be cytoadherence and blockage of the microvasculature. Therefore, an understanding of mechanisms that mediate parasite adhesion leading to malaria pathology is needed to yield new treatments for malaria. However, to date, cytoadherence-associated pathology is still under debate. Is cytoadherence needed to develop severe malaria? This review will discuss the available information on associations of cytoadherence with the development of severe malaria.
2.Cytotoxicity and scanning electron microscopy study of gentamycin-coated HA effect on biofilm.
Au LF ; Othman F ; Mustaffa R ; Vidyadaran S ; Rahmat A ; Besar I ; Akim AM ; Khan MA ; Saidi M ; Shamsudin MN ; Froemming GA ; Ishak AK
The Medical Journal of Malaysia 2008;63 Suppl A():16-17
Biofilms are adherent, multi-layered colonies of bacteria that are typically more resistant to the host immune response and routine antibiotic therapy. HA biomaterial comprises of a single-phased hydroxyapatite scaffold with interconnected pore structure. The device is designed as osteoconductive space filler to be gently packed into bony voids or gaps following tooth extraction or any surgical procedure. Gentamycin-coated biomaterial (locally made hydroxyapatite) was evaluated to reduce or eradicate the biofilm on the implant materials. The results indicated that the HA coated with gentamycin was biocompatible to human osteoblast cell line and the biofilm has been reduced after being treated with different concentrations of gentamycin-coated hydroxyapatite (HA).
3.Plasmodium falciparum protein kinase as a potential therapeutic target for antimalarial drugs development
Mahmud, F. ; Lee, P.C. ; Abdul Wahab, H. ; Mustaffa, K.M.F. ; Leow, C.H. ; Azhar, R. ; Lai, N.S.
Tropical Biomedicine 2020;37(No.3):822-841
Malaria is one of the most dangerous infectious diseases due to its high infection and mortality rates, especially in the tropical belt. Plasmodium falciparum (P. falciparum), the most virulent malaria parasite in humans, was recently reported to develop resistance against the final efficient antimalarial drug, artemisinin. Little is known about the resistance mechanisms, which further complicates the problem as a proper counteraction is unable to be taken. Hence, the understanding of drug mode of action and its molecular target is valuable knowledge that needs to be considered to develop the next generation of antimalarial drugs. P. falciparum protein kinase (Pf PK) is an attractive target for antimalarial chemotherapy due to its vital roles in all P. falciparum life stages. Moreover, overall structural differences and the presence of unique Pf PKs that are absent in human kinome, suggesting specific inhibition of Pf PK without affecting human cells is achievable. To date, at least 86 eukaryotic protein kinases have been identified in P. falciparum kinome, by which less than 40 were validated as potential targets at the erythrocytes stage. In this review, recent progress of the furthest validated Pf PKs; Pf Nek-1, Pf CDPK1, Pf CDPK4, Pf PKG, and Pf CLK-3 will be briefly discussed.