1.Reversion mutation in dark variants of luminous bacteria and its application in gene toxicant monitoring.
Journal of Huazhong University of Science and Technology (Medical Sciences) 2002;22(3):180-2
The luminous intensity of dark variant (S1) separated from photobacterium phosphoreum (A2) was 1/10,000 less than that of wild-type. Ethidium bromide (EB) (0.6 mg/L), Mytomycin C (MC, 0.05 mg/L), 2-amino fluorene (2-AF, 1.0 mg/L) all could strongly induce reversion mutation for S1 within 24 h and increase reversion ratio significantly. The results of experiments indicated that these revertants had stable genetic characteristic and the mutation may take place at gene levels. The mutagenesis to S1 caused by EB, MC and 2-AF was detected and it may be used as a new rapid, simple and sensitive method for gene toxicant monitoring.
*Chemiluminescent Measurements
;
Ethidium/pharmacology
;
Ethidium/toxicity
;
Luciferases/biosynthesis
;
Mitomycins/pharmacology
;
Mitomycins/toxicity
;
Mutagens
;
Mutation/*drug effects
;
Photobacterium/*genetics
;
Toxicology/methods
;
Transcription, Genetic/drug effects
;
Variation (Genetics)
2.Reversion mutation in dark variants of luminous bacteria and its application in gene toxicant monitoring.
Journal of Huazhong University of Science and Technology (Medical Sciences) 2002;22(3):180-182
The luminous intensity of dark variant (S1) separated from photobacterium phosphoreum (A2) was 1/10,000 less than that of wild-type. Ethidium bromide (EB) (0.6 mg/L), Mytomycin C (MC, 0.05 mg/L), 2-amino fluorene (2-AF, 1.0 mg/L) all could strongly induce reversion mutation for S1 within 24 h and increase reversion ratio significantly. The results of experiments indicated that these revertants had stable genetic characteristic and the mutation may take place at gene levels. The mutagenesis to S1 caused by EB, MC and 2-AF was detected and it may be used as a new rapid, simple and sensitive method for gene toxicant monitoring.
Ethidium
;
pharmacology
;
toxicity
;
Genetic Variation
;
Luciferases
;
biosynthesis
;
Luminescent Measurements
;
Mitomycins
;
pharmacology
;
toxicity
;
Mutagens
;
Mutation
;
drug effects
;
Photobacterium
;
genetics
;
Toxicology
;
methods
;
Transcription, Genetic
;
drug effects
3.In vitro antigenotoxicity of Ulva rigida C. Agardh (Chlorophyceae) extract against induction of chromosome aberration, sister chromatid exchange and micronuclei by mutagenic agent MMC.
Serap CELIKLER ; Gamze YILDIZ ; Ozgur VATAN ; Rahmi BILALOGLU
Biomedical and Environmental Sciences 2008;21(6):492-498
OBJECTIVETo determine the in vitro possible clastogenic and cytotoxic activities of Ulva rigida crude extracts (URE), and identify their antigenotoxic and protective effects on chemotherapeutic agent mitomycine-C (MMC).
METHODSAnti-clastogenic and anti-genotoxic activities of Ulva rigida crude extracts (URE) were studied using chromosome aberration (CA), sister chromatid exchange (SCE), and micronuclei (MN) tests in human lymphocytes cultured in vitro.
RESULTSThe chromosome aberration, sister chromatid exchange or micronuclei tests showed that URE at concentrations of 10, 20, and 40 microg/mL had no clastogenic activity in human lymphocyte cell culture. Three doses of URE significantly decreased the number of chromosomal aberrations and the frequencies of SCE and MN when compared with the culture treated with MMC (P < 0.0001).
CONCLUSIONAlthough URE itself is not a clastogenic or cytotoxic substance, it possesses strong antigenotoxic, anti-clastogenic, and protective effects on MMC in vitro.
Antibiotics, Antineoplastic ; pharmacology ; Antimutagenic Agents ; pharmacology ; Cells, Cultured ; Chlorophyta ; Chromosome Aberrations ; drug effects ; Dose-Response Relationship, Drug ; Humans ; Lymphocytes ; drug effects ; metabolism ; Micronucleus Tests ; Mitomycins ; pharmacology ; Mutagens ; toxicity ; Plant Extracts ; chemistry ; pharmacology ; Sister Chromatid Exchange ; drug effects