1.Irisin Attenuates Hepatic Stellate Cell Activation and Liver Fibrosis in Bile Duct Ligation Mice Model and Improves Mitochondrial Dysfunction
Thuy Linh LAI ; So Young PARK ; Giang NGUYEN ; Phuc Thi Minh PHAM ; Seon Mee KANG ; Jeana HONG ; Jae-Ho LEE ; Seung-Soon IM ; Dae-Hee CHOI ; Eun-Hee CHO
Endocrinology and Metabolism 2024;39(6):908-920
Background:
Liver fibrosis is a common outcome of chronic liver disease and is primarily driven by hepatic stellate cell (HSC) activation. Irisin, a myokine released during physical exercise, is beneficial for metabolic disorders and mitochondrial dysfunction. This study aimed to explore the effects of irisin on liver fibrosis in HSCs, a bile duct ligation (BDL) mouse model, and the associated mitochondrial dysfunction.
Methods:
In vitro experiments utilized LX-2 cells, a human HSC line, stimulated with transforming growth factor-β1 (TGF-β1), a major regulator of HSC fibrosis, with or without irisin. Mitochondrial function was assessed using mitochondrial fission markers, transmission electron microscopy, mitochondrial membrane potential, and adenosine triphosphate (ATP) production. In vivo, liver fibrosis was induced in mice via BDL, followed by daily intraperitoneal injections of irisin (100 μg/kg/day) for 10 days.
Results:
In vitro, irisin mitigated HSC activation and reduced reactive oxygen species associated with the TGF-β1/Smad signaling pathway. Irisin restored TGF-β1-induced increases in fission markers (Fis1, p-DRP1) and reversed the decreased expression of TFAM and SIRT3. Additionally, irisin restored mitochondrial membrane potential and ATP production lowered by TGF-β1 treatment. In vivo, irisin ameliorated the elevated liver-to-body weight ratio induced by BDL and alleviated liver fibrosis, as evidenced by Masson’s trichrome staining. Irisin also improved mitochondrial dysfunction induced by BDL surgery.
Conclusion
Irisin effectively attenuated HSC activation, ameliorated liver fibrosis in BDL mice, and improved associated mitochondrial dysfunction. These findings highlight the therapeutic potential of irisin for the treatment of liver fibrosis.
2.Irisin Attenuates Hepatic Stellate Cell Activation and Liver Fibrosis in Bile Duct Ligation Mice Model and Improves Mitochondrial Dysfunction
Thuy Linh LAI ; So Young PARK ; Giang NGUYEN ; Phuc Thi Minh PHAM ; Seon Mee KANG ; Jeana HONG ; Jae-Ho LEE ; Seung-Soon IM ; Dae-Hee CHOI ; Eun-Hee CHO
Endocrinology and Metabolism 2024;39(6):908-920
Background:
Liver fibrosis is a common outcome of chronic liver disease and is primarily driven by hepatic stellate cell (HSC) activation. Irisin, a myokine released during physical exercise, is beneficial for metabolic disorders and mitochondrial dysfunction. This study aimed to explore the effects of irisin on liver fibrosis in HSCs, a bile duct ligation (BDL) mouse model, and the associated mitochondrial dysfunction.
Methods:
In vitro experiments utilized LX-2 cells, a human HSC line, stimulated with transforming growth factor-β1 (TGF-β1), a major regulator of HSC fibrosis, with or without irisin. Mitochondrial function was assessed using mitochondrial fission markers, transmission electron microscopy, mitochondrial membrane potential, and adenosine triphosphate (ATP) production. In vivo, liver fibrosis was induced in mice via BDL, followed by daily intraperitoneal injections of irisin (100 μg/kg/day) for 10 days.
Results:
In vitro, irisin mitigated HSC activation and reduced reactive oxygen species associated with the TGF-β1/Smad signaling pathway. Irisin restored TGF-β1-induced increases in fission markers (Fis1, p-DRP1) and reversed the decreased expression of TFAM and SIRT3. Additionally, irisin restored mitochondrial membrane potential and ATP production lowered by TGF-β1 treatment. In vivo, irisin ameliorated the elevated liver-to-body weight ratio induced by BDL and alleviated liver fibrosis, as evidenced by Masson’s trichrome staining. Irisin also improved mitochondrial dysfunction induced by BDL surgery.
Conclusion
Irisin effectively attenuated HSC activation, ameliorated liver fibrosis in BDL mice, and improved associated mitochondrial dysfunction. These findings highlight the therapeutic potential of irisin for the treatment of liver fibrosis.
3.Irisin Attenuates Hepatic Stellate Cell Activation and Liver Fibrosis in Bile Duct Ligation Mice Model and Improves Mitochondrial Dysfunction
Thuy Linh LAI ; So Young PARK ; Giang NGUYEN ; Phuc Thi Minh PHAM ; Seon Mee KANG ; Jeana HONG ; Jae-Ho LEE ; Seung-Soon IM ; Dae-Hee CHOI ; Eun-Hee CHO
Endocrinology and Metabolism 2024;39(6):908-920
Background:
Liver fibrosis is a common outcome of chronic liver disease and is primarily driven by hepatic stellate cell (HSC) activation. Irisin, a myokine released during physical exercise, is beneficial for metabolic disorders and mitochondrial dysfunction. This study aimed to explore the effects of irisin on liver fibrosis in HSCs, a bile duct ligation (BDL) mouse model, and the associated mitochondrial dysfunction.
Methods:
In vitro experiments utilized LX-2 cells, a human HSC line, stimulated with transforming growth factor-β1 (TGF-β1), a major regulator of HSC fibrosis, with or without irisin. Mitochondrial function was assessed using mitochondrial fission markers, transmission electron microscopy, mitochondrial membrane potential, and adenosine triphosphate (ATP) production. In vivo, liver fibrosis was induced in mice via BDL, followed by daily intraperitoneal injections of irisin (100 μg/kg/day) for 10 days.
Results:
In vitro, irisin mitigated HSC activation and reduced reactive oxygen species associated with the TGF-β1/Smad signaling pathway. Irisin restored TGF-β1-induced increases in fission markers (Fis1, p-DRP1) and reversed the decreased expression of TFAM and SIRT3. Additionally, irisin restored mitochondrial membrane potential and ATP production lowered by TGF-β1 treatment. In vivo, irisin ameliorated the elevated liver-to-body weight ratio induced by BDL and alleviated liver fibrosis, as evidenced by Masson’s trichrome staining. Irisin also improved mitochondrial dysfunction induced by BDL surgery.
Conclusion
Irisin effectively attenuated HSC activation, ameliorated liver fibrosis in BDL mice, and improved associated mitochondrial dysfunction. These findings highlight the therapeutic potential of irisin for the treatment of liver fibrosis.
4.Irisin Attenuates Hepatic Stellate Cell Activation and Liver Fibrosis in Bile Duct Ligation Mice Model and Improves Mitochondrial Dysfunction
Thuy Linh LAI ; So Young PARK ; Giang NGUYEN ; Phuc Thi Minh PHAM ; Seon Mee KANG ; Jeana HONG ; Jae-Ho LEE ; Seung-Soon IM ; Dae-Hee CHOI ; Eun-Hee CHO
Endocrinology and Metabolism 2024;39(6):908-920
Background:
Liver fibrosis is a common outcome of chronic liver disease and is primarily driven by hepatic stellate cell (HSC) activation. Irisin, a myokine released during physical exercise, is beneficial for metabolic disorders and mitochondrial dysfunction. This study aimed to explore the effects of irisin on liver fibrosis in HSCs, a bile duct ligation (BDL) mouse model, and the associated mitochondrial dysfunction.
Methods:
In vitro experiments utilized LX-2 cells, a human HSC line, stimulated with transforming growth factor-β1 (TGF-β1), a major regulator of HSC fibrosis, with or without irisin. Mitochondrial function was assessed using mitochondrial fission markers, transmission electron microscopy, mitochondrial membrane potential, and adenosine triphosphate (ATP) production. In vivo, liver fibrosis was induced in mice via BDL, followed by daily intraperitoneal injections of irisin (100 μg/kg/day) for 10 days.
Results:
In vitro, irisin mitigated HSC activation and reduced reactive oxygen species associated with the TGF-β1/Smad signaling pathway. Irisin restored TGF-β1-induced increases in fission markers (Fis1, p-DRP1) and reversed the decreased expression of TFAM and SIRT3. Additionally, irisin restored mitochondrial membrane potential and ATP production lowered by TGF-β1 treatment. In vivo, irisin ameliorated the elevated liver-to-body weight ratio induced by BDL and alleviated liver fibrosis, as evidenced by Masson’s trichrome staining. Irisin also improved mitochondrial dysfunction induced by BDL surgery.
Conclusion
Irisin effectively attenuated HSC activation, ameliorated liver fibrosis in BDL mice, and improved associated mitochondrial dysfunction. These findings highlight the therapeutic potential of irisin for the treatment of liver fibrosis.
5.Epilepsy in Southeast Asia, how much have we closed the management gap in past two decades?
Kheng-Seang Lim ; Zhi-Jien Chia ; Moe-Zaw Myint ; Kazi Jannat Ara ; Yong-Chuan Chee ; Woon-Theng Heng ; Thanmidraaj-Kaur Balraj Singh ; Janice-Ying-Qian Ong ; Slocahnah SreeKumar ; Minh-An Thuy Lee ; Si-Lei Fong ; Chong-Tin Tan
Neurology Asia 2020;25(4):425-438
The last review on epilepsy in Southeast Asian (SEA) countries was reported in 1997. This review
aimed to update the understanding of epilepsy management in this region over the past 23 years. There
has been significant increase in the epidemiological studies which reported a prevalence of 4.3-7.7 per
1,000 populations in this region. Reversible aetiologies of epilepsy such as head injury, birth trauma,
cerebrovascular disease, and intracranial infections (neurocysticercosis or meningoencephalitis) are
still prevalent, with a surge in autoimmune encephalitis. There was a surge in genetic studies which
suggest ethnic variation. Treatment gap is still high especially in the rural and less developed areas,
and the availability and affordability of newer anti-epileptic drugs (AEDs) is still a major challenge
in SEA. Alternative medicine is a common practice but varies among different ethnic groups. AEDs
hypersensitivity especially on the association between HLA-B*1502 and carbamazepine-related severe
cutaneous reaction had been extensively studied and proven in nearly all SEA countries. However,
HLA-B*1502 screening is not widely available in SEA and the cost-effectiveness of the screening is
questionable. Stigma and its psychosocial consequences are still a major concern despite enormous
efforts to study the public attitudes towards epilepsy and change of epilepsy naming in a few countries.
The number and complexity of epilepsy surgery are progressing, but it is still under-utilized in many
SEA countries, related to cost, cultural perception and lack of facilities. More resources should also
be channelled in training adequate number of epileptologists who can spearhead epilepsy care around
the region, as well as public education and research in epilepsy. In conclusion, there is an increase in
epilepsy research in this region, gradual increase in trained neurologists and facilities, and efforts to
reduce the knowledge and treatment gap, but the epilepsy management gap is still a battle to fight.