1.On the Dominant Intercropping Combination Between Biennial Dwarf Lilyturf (Ophiopogon japonicus) and Different Crops
Xunchuan ZHAO ; Jiangang CHEN ; Minglong HU
Chinese Traditional and Herbal Drugs 1994;0(07):-
Dominant intercropping combination between biennial Ophiopogon joponicvs and different crops was tried with reference to agricultural condition specific to Cixi county,zhejiang Province. The quantity and quality of the product and its economical effect resulted in biennal cultivation with different crop: were assessed. Results showed that the optimurm combination in the first year of undersowing was cotton in the summer and broadbean(vicia faba L. ) in the winter, while in the second year watctmelon (Citrullus lanatus) was the ideal combination in he summer.
2.Overexpressing 3-ketosteroid-Δ1-dehydrogenase for degrading phytosterols into androst-1,4-diene-3,17-dione.
Lele ZHANG ; Xian ZHANG ; Minglong SHAO ; Rongrong CHEN ; Zhiming RAO ; Hu LI ; Zhenghong XU
Chinese Journal of Biotechnology 2015;31(11):1589-1600
We constructed plasmid pMTac to overexpress 3-ketosteroid-Δ1-dehydrogenase (KSDD) in Mycobacterium neoaurum JC-12 for improving androst-1,4-diene-3,17-dione (ADD) production. To construct pMTac, pACE promoter on pMF41 was replaced by tac promoter, and then four recombinants were constructed, which were M. neoaurum JC-12/pMF41-gfp, M. neoaurum JC-12/pMTac-gfp, M. neoaurum JC-12/pMF41-ksdd and M. neoaurum JC-12/pMTac-ksdd. Fluorescence detection results show that much more green fluorescent protein (GFP) was expressed in M. neoaurum JC-12/pMTac-ksdd than M. neoaurum JC-12/pMF41-ksdd. The activity of KSDD was 2.41 U/mg in M. neoaurum JC-12/pMTac-ksdd, 6.53-fold as that of M. neoaurum JC-12 and 4.36-fold as that of M. neoaurum JC-12/pMF41-ksdd. In shake flask fermentation, ADD production of M. neoaurum JC-12/pMTac-ksdd was 5.94 g/L, increased about 22.2% compared to the original strain M. neoaurum JC-12 and 12.7% to M. neoaurum JC-12/pMF41-ksdd. AD (4-androstene-3,17-dione) production of JC-12/pMTac-ksdd was 0.17 g/L, decreased 81.5% compared to M. neoaurum JC-12 and 71.2% to M neoaurum JC-12/pMF41-ksdd. In the 5 L fermenter, 20 g/L phytosterols was used as substrate, ADD production of M. neoaurum JC-12/pMTac-ksdd was improved to 10.28 g/L. pMTac is favorable for expressing KSDD in M. neoaurum JC-12, and overexpression of KSDD has beneficial effect on ADD producing, and it is the highest level ever reported using fermentation method in M. neoaurum.
Androstadienes
;
metabolism
;
Fermentation
;
Industrial Microbiology
;
Mycobacterium
;
Oxidoreductases
;
genetics
;
metabolism
;
Phytosterols
;
metabolism
;
Plasmids