1.The rapetic analysis of 48 cases with subcutanous fistula excision to long-path low anus fistula
Guangsheng LIU ; Weizhi WANG ; Shaolei REN ; Mingliang GUI
Chinese Journal of Primary Medicine and Pharmacy 2009;16(3):408-409
Objective To investigate the clinical effects of subeutanous fistula excision for the long-path low anus fistula.Methods Operation for long-path low anus fistula,fistula length>5cm,divided the pafients into two groups.The therapeutic group:using subcutanous fistula excision;the control group:using fistula icision.Comparing the healing time,arIus malformation,recurrence rate.Results Therapeutic group 47 cases heal,the healing time was 12 days;no anus malformation;no arms ineontenience.In the control group,the healing time was 23 days;anus malformation 23 cases;anus gas incontenience 12 cases.Conclusion To use subcutanous fistula excision for the longpath low anus fistula has the advantages of short healing time,no anus malformation,less pain,and low reccurrent rate.
2. Experimental study of silybin-phospholipid complex intervention on amiodarone-induced fatty liver in mice
Shuangshuang SUN ; Yinxia WU ; Mingliang CHENG ; Chengwei CHEN ; Yanshen PENG ; Qi MIAO ; Zhaolian BIAN ; Xiaojin WANG ; Qingchun FU
Chinese Journal of Hepatology 2019;27(1):45-50
Objective:
To probe into the mechanism and interventional effects of silybin-phospholipid complex on amiodarone-induced steatosis in mice.
Methods:
Eight-week-old male C57BL/6 mice were divided into three groups (5 mice in each group): a control group (WT) with normal diet, a model group with amiodarone 150mg/kg/d by oral gavage (AM), and an intervention group on amiodarone 150mg/kg/d combined with silybin-phospholipid complex(AM+SILIPHOS. All mice were fed their assigned diet for one week. Then, one week later, serum alanine aminotransferase, aspartate aminotransferase, triglyceride, total cholesterol and high-density lipoprotein were detected of each group. A liver pathological change was observed by oil red O and H&E staining. Ultrastructural pathological changes of hepatocytes were observed to evaluate the intervention effect by transmission electron microscopy. RT-q PCR was used to detect the expression of peroxisome proliferator-activated receptor alpha and its regulated lipid metabolism genes CPTI, CPTII, Acot1, Acot2, ACOX, Cyp4a10 and Cyp4a14 in liver tissues. Intra-group comparison was done by paired t-test. One-way ANOVA was used for comparison between groups and semi-quantitative data were tested using Mann-Whitney U test.
Results:
Oil Red O and H&E staining results of liver tissue in the intervention group showed that intrahepatic steatosis was significantly reduced when compared to model group. Transmission electron microscopy showed that the model group had pyknotic nuclei, mitochondrial swelling, structural damage, and lysosomal degradation whereas the intervention group had hepatic nucleus without pyknosis, reduced mitochondrial swelling and slight structural damage than that of model group. RT-q PCR results showed that the expression of peroxisome proliferator-activated receptor alpha, CPTI, CPTII, Acot1, Acot2, ACOX, Cyp4a10 and Cyp4a14 were increased in the model group but the expression of CPTI, Cyp4a14, Acot1 and peroxisome proliferator-activated receptor alpha were decreased in the intervention group (
3.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.