1.Pulmonary hyalinizing granuloma
Zhaolin XU ; Drew BETHUNE ; Daria MANOS ; Annette FOYLE ; Harry HENTELEFF ; Michael JOHNSTON ; Yannick CARTIER
Journal of Peking University(Health Sciences) 2009;41(4):463-468
Objective:To present clinical and pathologic features of pulmonary hyalnizing granuloma through analyzing three cases found in our institution and reviewing cases reported in the English language literature. Methods and Results: Three eases of pulmonary hyalnizing granuloma identified at our institu-tion during the past ten years were reviewed. In the first case, the patient presented with concurrent pulmonary hyalinizing granuloma and histoplasmosis. In the second case, the patient presented with a 5.5 cm lung mass and a separate smaller lesion radiologically resembling bronchogenic carcinoma. There was very prominent polyclonal lymphocytic proliferation at the periphery especially of the smaller lesion likely representing an early stage of the disease process. In the third case, the patient presented with multiple subpleural plaque-like lesions in addition to nodular lesions of the lung. All cases also demonstrated various degrees of lymphocytic infiltration within the lesions. The English literature has been reviewed through searching the PubMed. Conclusion: Since patients with pulmonary hyalinizing granuloma demonstrated a spectrum of clinical presentations, radiologic changes and histologic features with a variety of associated clinical disorders, pulmonary hyalnizing granuloma is more in keeping with a clinicopathologic entity rather than a specific pathologic disease.
2.Genotype-phenotype analyses of classic neuronal ceroid lipofuscinosis (NCLs): genetic predictions from clinical and pathological findings
Weina JU ; Anetta WRONSKA ; Dorota N. MOROZIEWICZ ; Rocksheng ZHONG ; Natalia WISNIEWSKI ; Anna JURKIEWICZ ; Michael FIORY ; Krystyna E. WISNIEWSKI ; Lance JOHNSTON ; W. Ted BROWN
Journal of Peking University(Health Sciences) 2006;38(1):41-48
Objective:Genotype-phenotype associations were studied in 517 subjects clinically affected by classical neuronal ceroid lipofuscinosis (NCL). Methods:Genetic loci CLN1-3 were analyzed in regard to age of onset, initial neurological symptoms, and electron microscope (EM) profiles. Results: The most common initial symptom leading to a clinical evaluation was developmental delay (30%) in NCL1, seizures (42.4%) in NCL2, and vision problems (53.5%) in NCL3. Eighty-two percent of NCL1 cases had granular osmiophilic deposits (GRODs) or mixed-GROD-containing EM profiles; 94% of NCL2 cases had curvilinear (CV) or mixed-CV-containing profiles; and 91% of NCL3 had fingerprint (FP) or mixed-FP-containing profiles. The mixed-type EM profile was found in approximately one-third of the NCL cases. DNA mutations within a specific CLN gene were further correlated with NCL phenotypes. Seizures were noticed to associate with common mutations 523G>A and 636C>T of CLN2 in NCL2 but not with common mutations 223G>A and 451C>T of CLN1 in NCL1. Vision loss was the initial symptom in all types of mutations in NCL3. Surprisingly, our data showed that the age of onset was atypical in 51.3% of NCL1 (infantile form) cases, 19.7% of NCL2 (late-infantile form) cases, and 42.8% of NCL3 (juvenile form) cases.Conclusion:Our data provide an overall picture regarding the clinical recognition of classical childhood NCLs. This may assist in the prediction and genetic identification of NCL1-3 via their characteristic clinical features.
3.Structure and function of epididymal protein cysteine-rich secretory protein-1.
Kenneth P ROBERTS ; Daniel S JOHNSTON ; Michael A NOLAN ; Joseph L WOOTERS ; Nicole C WAXMONSKY ; Laura B PIEHL ; Kathy M ENSRUD-BOWLIN ; David W HAMILTON
Asian Journal of Andrology 2007;9(4):508-514
Cysteine-rich secretory protein-1 (CRISP-1) is a glycoprotein secreted by the epididymal epithelium. It is a member of a large family of proteins characterized by two conserved domains and a set of 16 conserved cysteine residues. In mammals, CRISP-1 inhibits sperm-egg fusion and can suppress sperm capacitation. The molecular mechanism of action of the mammalian CRISP proteins remains unknown, but certain non-mammalian CRISP proteins can block ion channels. In the rat, CRISP-1 comprises two forms referred to as Proteins D and E. Recent work in our laboratory demonstrates that the D form of CRISP-1 associates transiently with the sperm surface, whereas the E form binds tightly. When the spermatozoa are washed, the E form of CRISP-1 persists on the sperm surface after all D form has dissociated. Cross-linking studies demonstrate different protein-protein interaction patterns for D and E, although no binding partners for either protein have yet been identified. Mass spectrometric analyses revealed a potential post-translational modification on the E form that is not present on the D form. This is the only discernable difference between Proteins D and E, and presumably is responsible for the difference in behavior of these two forms of rat CRISP-1. These studies demonstrate that the more abundant D form interacts with spermatozoa transiently, possibly with a specific receptor on the sperm surface, consistent with a capacitation-suppressing function during sperm transit and storage in the epididymis, and also confirm a tightly bound population of the E form that could act in the female reproductive tract.
Amino Acid Sequence
;
Animals
;
Conserved Sequence
;
Humans
;
Male
;
Mammals
;
Membrane Glycoproteins
;
genetics
;
metabolism
;
Molecular Sequence Data
;
Rats
;
Spermatozoa
;
physiology
4.Innate Immune Response to Viral Infections in Primary Bronchial Epithelial Cells is Modified by the Atopic Status of Asthmatic Patients.
Sylwia MOSKWA ; Wojciech PIOTROWSKI ; Jerzy MARCZAK ; Małgorzata PAWEŁCZYK ; Anna LEWANDOWSKA-POLAK ; Marzanna JARZĘBSKA ; Małgorzata BRAUNCAJS ; Anna GŁOBIŃSKA ; Paweł GÓRSKI ; Nikolaos G PAPADOPOULOS ; Michael R EDWARDS ; Sebastian L JOHNSTON ; Marek L KOWALSKI
Allergy, Asthma & Immunology Research 2018;10(2):144-154
PURPOSE: In order to gain an insight into determinants of reported variability in immune responses to respiratory viruses in human bronchial epithelial cells (HBECs) from asthmatics, the responses of HBEC to viral infections were evaluated in HBECs from phenotypically heterogeneous groups of asthmatics and in healthy controls. METHODS: HBECs were obtained during bronchoscopy from 10 patients with asthma (6 atopic and 4 non-atopic) and from healthy controls (n=9) and grown as undifferentiated cultures. HBECs were infected with parainfluenza virus (PIV)-3 (MOI 0.1) and rhinovirus (RV)-1B (MOI 0.1), or treated with medium alone. The cell supernatants were harvested at 8, 24, and 48 hours. IFN-α, CXCL10 (IP-10), and RANTES (CCL5) were analyzed by using Cytometric Bead Array (CBA), and interferon (IFN)-β and IFN-λ1 by ELISA. Gene expression of IFNs, chemokines, and IFN-regulatory factors (IRF-3 and IRF-7) was determined by using quantitative PCR. RESULTS: PIV3 and RV1B infections increased IFN-λ1 mRNA expression in HBECs from asthmatics and healthy controls to a similar extent, and virus-induced IFN-λ1 expression correlated positively with IRF-7 expression. Following PIV3 infection, IP-10 protein release and mRNA expression were significantly higher in asthmatics compared to healthy controls (median 36.03-fold). No differences in the release or expression of RANTES, IFN-λ1 protein and mRNA, or IFN-α and IFN-β mRNA between asthmatics and healthy controls were observed. However, when asthmatics were divided according to their atopic status, HBECs from atopic asthmatics (n=6) generated significantly more IFN-λ1 protein and demonstrated higher IFN-α, IFN-β, and IRF-7 mRNA expressions in response to PIV3 compared to non-atopic asthmatics (n=4) and healthy controls (n=9). In response to RV1B infection, IFN-β mRNA expression was lower (12.39-fold at 24 hours and 19.37-fold at 48 hours) in non-atopic asthmatics compared to atopic asthmatics. CONCLUSIONS: The immune response of HBECs to virus infections may not be deficient in asthmatics, but seems to be modified by atopic status.
Asthma
;
Bronchi*
;
Bronchoscopy
;
Chemokine CCL5
;
Chemokines
;
Enzyme-Linked Immunosorbent Assay
;
Epithelial Cells*
;
Gene Expression
;
Humans
;
Immunity, Innate*
;
Interferons
;
Paramyxoviridae Infections
;
Polymerase Chain Reaction
;
Rhinovirus
;
RNA, Messenger