1.The risk prediction models for anastomotic leakage after esophagectomy: A systematic review and meta-analysis
Yushuang SU ; Yan LI ; Hong GAO ; Zaichun PU ; Juan CHEN ; Mengting LIU ; Yaxie HE ; Bin HE ; Qin YANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):230-236
Objective To systematically evaluate the risk prediction models for anastomotic leakage (AL) in patients with esophageal cancer after surgery. Methods A computer-based search of PubMed, EMbase, Web of Science, Cochrane Library, Chinese Medical Journal Full-text Database, VIP, Wanfang, SinoMed and CNKI was conducted to collect studies on postoperative AL risk prediction model for esophageal cancer from their inception to October 1st, 2023. PROBAST tool was employed to evaluate the bias risk and applicability of the model, and Stata 15 software was utilized for meta-analysis. Results A total of 19 literatures were included covering 25 AL risk prediction models and 7373 patients. The area under the receiver operating characteristic curve (AUC) was 0.670-0.960. Among them, 23 prediction models had a good prediction performance (AUC>0.7); 13 models were tested for calibration of the model; 1 model was externally validated, and 10 models were internally validated. Meta-analysis showed that hypoproteinemia (OR=9.362), postoperative pulmonary complications (OR=7.427), poor incision healing (OR=5.330), anastomosis type (OR=2.965), preoperative history of thoracoabdominal surgery (OR=3.181), preoperative diabetes mellitus (OR=2.445), preoperative cardiovascular disease (OR=3.260), preoperative neoadjuvant therapy (OR=2.977), preoperative respiratory disease (OR=4.744), surgery method (OR=4.312), American Society of Anesthesiologists score (OR=2.424) were predictors for AL after esophageal cancer surgery. Conclusion At present, the prediction model of AL risk in patients with esophageal cancer after surgery is in the development stage, and the overall research quality needs to be improved.
2.Mechanism of 1,25(OH)2D3 improving liver inflammation in a rat model of nonalcoholic steatohepatitis induced by choline-deficient L-amino acid-defined diet
Haiyang ZHU ; Jingshu CUI ; Liu YANG ; Mengting ZHOU ; Jian TONG ; Hongmei HAN
Journal of Clinical Hepatology 2025;41(2):254-262
ObjectiveTo investigate the effect of 1,25(OH)2D3 on the level of peroxisome proliferator-activated receptor-γ (PPAR-γ) in the liver, the phenotype of hepatic macrophages, and liver inflammation in a rat model of nonalcoholic steatohepatitis (NASH), as well as the mechanism of 1,25(OH)2D3 improving liver inflammation. MethodsAfter 1 week of adaptive feeding, 24 specific pathogen-free Wistar rats were randomly divided into normal group [choline-supplemented L-amino acid-defined (CSAA) diet], normal+1,25(OH)2D3 group [CSAA diet+1,25(OH)2D3], model group [choline-deficient L-amino acid-defined diet (CDAA) diet], and model+1,25(OH)2D3 group [CDAA diet+1,25(OH)2D3], with 6 rats in each group. The dose of 1,25(OH)2D3 was 5 μg/kg for intraperitoneal injection twice a week for 12 weeks. The serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured, liver histopathology was observed, and SAF score was assessed. M1 hepatic macrophages and M2 hepatic macrophages were measured to analyze in the change in the phenotype of hepatic macrophages, and ELISA was used to measure the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-4 (IL-4), and interleukin-10 (IL-10) in liver tissue, and qPCR was used to measure the mRNA level of PPAR-γ. The two-factor analysis of variance was use for comparison between groups, and the least significant difference t-test was used for further comparison; the Pearson method was used for correlation analysis. ResultsCompared with the normal group, the model rats with CDAA diet-induced NASH had significant increases in the serum levels of AST and ALT (P=0.019 and P<0.001), the SAF score of liver histopathology (P<0.001), the level of M1 hepatic macrophages (P<0.001), and the ratio of M1 and M2 hepatic macrophages (P<0.001), as well as a significant increase in the level of TNF-α (P<0.001) and a significant reduction in the level of IL-4 in liver tissue (P=0.025). The 1,25(OH)2D3 group had significant reductions in the serum levels of ALT (P<0.001), the SAF score of liver histopathology (P<0.001), the level of M1 hepatic macrophages (P<0.001), and the ratio of M1 and M2 hepatic macrophages (P=0.001), the level of IL-1β (P<0.001) and a significant increase in the level of M2 hepatic macrophages (P=0.017), the level of IL-10 (P=0.039), the level of IL-4 (P<0.001), the level of PPAR-γ (P=0.016). There were significant interactions between CDAA diet-induced NASH model and 1,25(OH)2D3 in serum the levels of AST and ALT (P=0.007 and P=0.008), the SAF scores of liver histopathology (P<0.001), the level of M1 hepatic macrophages (P<0.001), the level of M2 hepatic macrophages (P=0.008), the ratio of M1 and M2 of hepatic macrophages (P=0.005), the level of TNF-α (P<0.001), the level of IL-10 (P=0.038), the level of IL-4 (P<0.001) and the level of PPAR-γ (P=0.009). The correlation analysis showed that PPAR-γ was negatively correlated with the ratio of M1 and M2 hepatic macrophages (r=-0.415, P=0.044) and was positively correlated with M2 hepatic macrophages (r=0.435, P=0.033), IL-10 (r=0.433, P=0.035), and IL-4 (r=0.532, P=0.007). ConclusionThis study shows that 1,25(OH)2D3 improves liver inflammation in NASH by activating PPAR-γ to regulate the phenotypic transformation of hepatic macrophages.
3.Advances in diffuse optical technology lenses for myopia control
Kun HE ; Bingxin PAN ; Suyun YANG ; Zhiyang HE ; Mengting ZHENG ; Meiling SHU ; Pengfei JIANG ; Shan XU ; Pengfei TIAN
International Eye Science 2025;25(9):1476-1483
Recent years have witnessed significant advancements in myopia control research through the application of diffuse optical technology(DOT)spectacle lenses. Myopia has emerged as a global public health challenge, affecting nearly half of the world's population, with childhood and adolescent myopia rates continuing to rise. DOT lenses represent an innovative myopia control intervention based on retinal contrast signal theory. These lenses incorporate micro-light scattering dots distributed across the lens surface to reduce retinal imaging contrast and modulate the influence of visual input on axial elongation, thereby slowing myopia progression. The core mechanism operates through refractive index differences between the lens substrate(1.53)and scattering dots(1.50), which generate optical scattering effects. This design maintains clear vision through a central 5 mm optical zone while effectively reducing contrast signal intensity in the peripheral retina. Large-scale randomized controlled trials, including the CYPRESS study, have demonstrated significant myopia control efficacy in children aged 6-10 years: 12-month follow-up data revealed a 74% reduction in myopia progression and a 50% reduction in axial elongation, with sustained safety and visual quality maintained over 4-year long-term follow-up. However, several aspects of DOT technology remain contentious and require further clinical validation, including its applicability across different age groups, optimal scattering dot density configurations, combined application effects with other myopia control methods, and long-term visual adaptation during extended use. This review systematically examines the theoretical foundations, design characteristics, clinical application progress, and future development directions of DOT technology, providing scientific evidence for clinical myopia prevention and control strategy formulation.
5.2,6-dimethoxy-1,4-benzoquinone alleviates dextran sulfate sodium-induced ulcerative colitis in mice by suppressing NLRP3 inflammasome activation.
Chenfei LIU ; Wei ZHANG ; Yao ZENG ; Yan LIANG ; Mengting WANG ; Mingfang ZHANG ; Xinyuan LI ; Fengchao WANG ; Yanqing YANG
Journal of Southern Medical University 2025;45(8):1654-1662
OBJECTIVES:
To investigate the therapeutic mechanism of 2,6-dimethoxy-1,4-benzoquinone (DMQ) for alleviating dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice.
METHODS:
Eighteen male C57BL/6J mice were equally randomized into control group, DSS group and DMQ treatment group. In DSS and DMQ groups, the mice were treated with DSS in drinking water to induce UC, and received intraperitoneal injections of sterile PBS or DMQ (20 mg/kg) during modeling. The changes in body weight, disease activity index (DAI), colon length, spleen weight, and colon histological scores of the mice were examined, and the percentages of Th17 and IFN-γ+ CD8+ T cells in the mesenteric lymph nodes and spleen were analyzed using flow cytometry. The expressions of tight junction proteins (Occludin and ZO-1), proteins associated with inflammasome activation (caspase-1 and p20), IL-1β and TNF-α in the colon tissues were detected using Western blotting or ELISA. In the cell experiment, mouse bone marrow-derived macrophages (BMDMs) primed with lipopolysaccharide (LPS) were treated with DMQ, followed by stmulation with nigericin to activate the classical NLRP3 inflammasome pathway. In cultured human peripheral blood mononuclear cells (PBMCs) treated with either LPS alone or LPS plus nigericin, the effects of DMQ on inflammasome activation, pyroptosis, and cytokine release were evaluated via Western blotting, ELISA, and flow cytometry.
RESULTS:
In DSS-treated mice, DMQ treatment significantly alleviated DSS-induced body weight loss, colon shortening, spleen enlargement, and colon inflammation. The DMQ-treated mice showed significantly reduced percentages of Th17 cells and IFN-γ+ CD8+ T cells in the mesenteric lymph nodes and spleen, with increased occludin and ZO-1 expressions and decreased caspase-1 expression in the colon tissue. DMQ obviously inhibited classical NLRP3 inflammasome activation in mouse BMDMs and both the classical and alternative pathways of NLRP3 activation in human PBMCs, causing also suppression of caspase-1-dependent pyroptosis.
CONCLUSIONS
DMQ ameliorates DSS-induced UC in mice by inhibiting NLRP3 inflammasome activation.
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Mice, Inbred C57BL
;
Colitis, Ulcerative/metabolism*
;
Dextran Sulfate/adverse effects*
;
Male
;
Inflammasomes/metabolism*
;
Mice
;
Benzoquinones/therapeutic use*
;
Th17 Cells
;
Caspase 1/metabolism*
6.Taohe Chengqi decoction inhibits PAD4-mediated neutrophil extracellular traps and mitigates acute lung injury induced by sepsis.
Mengting XIE ; Xiaoli JIANG ; Weihao JIANG ; Lining YANG ; Xiaoyu JUE ; Yunting FENG ; Wei CHEN ; Shuangwei ZHANG ; Bin LIU ; Zhangbin TAN ; Bo DENG ; Jingzhi ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(10):1195-1209
Acute lung injury (ALI) is a significant complication of sepsis, characterized by high morbidity, mortality, and poor prognosis. Neutrophils, as critical intrinsic immune cells in the lung, play a fundamental role in the development and progression of ALI. During ALI, neutrophils generate neutrophil extracellular traps (NETs), and excessive NETs can intensify inflammatory injury. Research indicates that Taohe Chengqi decoction (THCQD) can ameliorate sepsis-induced lung inflammation and modulate immune function. This study aimed to investigate the mechanisms by which THCQD improves ALI and its relationship with NETs in sepsis patients, seeking to provide novel perspectives and interventions for clinical treatment. The findings demonstrate that THCQD enhanced survival rates and reduced lung injury in the cecum ligation and puncture (CLP)-induced ALI mouse model. Furthermore, THCQD diminished neutrophil and macrophage infiltration, inflammatory responses, and the production of pro-inflammatory cytokines, including interleukin-1β (IL-1β), IL-6, and tumor necrosis factor α (TNF-α). Notably, subsequent experiments confirmed that THCQD inhibits NET formation both in vivo and in vitro. Moreover, THCQD significantly decreased the expression of peptidyl arginine deiminase 4 (PAD4) protein, and molecular docking predicted that certain active compounds in THCQD could bind tightly to PAD4. PAD4 overexpression partially reversed THCQD's inhibitory effects on PAD4. These findings strongly indicate that THCQD mitigates CLP-induced ALI by inhibiting PAD4-mediated NETs.
Extracellular Traps/immunology*
;
Acute Lung Injury/immunology*
;
Animals
;
Sepsis/immunology*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice
;
Neutrophils/immunology*
;
Male
;
Protein-Arginine Deiminase Type 4/genetics*
;
Mice, Inbred C57BL
;
Humans
;
Disease Models, Animal
;
Cytokines/metabolism*
7.Eating Raw Snails Infected with Angiostrongylus Cantonensis Causes Eosinophilic Meningitis: A Case Report
Mengting HU ; Dong ZHANG ; Peiyao JIA ; Minya LU ; Menglan ZHOU ; Jiayu GUO ; Huiting SU ; Yi GAO ; Jingyuan XI ; Huadong ZHU ; Qiwen YANG
Medical Journal of Peking Union Medical College Hospital 2024;15(6):1463-1467
We report a case of a male patient who developed persistent fever and central nervous system symptoms after eating raw snails for 10 days. The patient was diagnosed with Angiostrongyliasis depended on the clinical presentation, epidemiological history, and etiological results. The patient recovered after receiving albendazole anthelmintic and dexamethasone anti-inflammatory therapy. This article incorporates literature review to sort out the diagnosis and treatment of this patient, in order to provide feasible reference for clinicians.
8.Untargeted metabolomics methods to study the pattern of metabolites in the serum of brucellosis patients
Jingyi LU ; Mengting PANG ; Qingru YUN ; Zhenxin LI ; Yuanke YANG ; Yingbo XIE ; Meng GAO ; Xiaokui GUO ; Yongzhang ZHU ; Yaoxia KANG
Chinese Journal of Endemiology 2024;43(2):87-93
Objective:To study the changes in serum small molecule metabolites after brucella infection in humans using untargeted metabolomics methods, and screening representative biomarkers. Methods:A total of 109 serum samples collected from January 2019 to December 2021 at the Brucellosis Clinic of the Baotou Center for Disease Control and Prevention were divided into acute phase group ( n = 40), chronic phase group ( n = 35) of brucellosis, and healthy group ( n = 34) based on clinical diagnosis. Ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry technology was used to test serum samples and screen for differential metabolites. Receiver operating characteristic curve was used to evaluate the predictive ability of differential metabolites for brucellosis. Enriched pathways were screened using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway to identify metabolic pathways significantly affected. Results:A total of 17 differential metabolites were screened between the acute phase group and the healthy group, and 12 differential metabolites were screened between the chronic phase group and the healthy group. There were a total of 5 differential metabolites (oleamide, linoleamide, stearamide, palmitoleic acid, α-linolenic acid) statistically significant among the three groups ( F = 16.84, 17.52, 14.31, 13.01, 20.76, P < 0.05). KEGG pathway analysis showed that the differential metabolites in the acute phase group were enriched in metabolic pathways such as ether lipid metabolism, glycerophosphate metabolism, sphingolipid signal and sphingolipid metabolism. The differential metabolites in the chronic phase group were enriched in metabolic pathways such as glycerophosphate metabolism, ether lipid metabolism, protein digestion and absorption metabolism. Conclusion:Untargeted metabolomics methods can screen out serum small molecule metabolites that undergo changes after brucella infection in the human body, including oleamide, linoleamide, stearamide, palmitoleic acid, α-linolenic acid can serve as potential biomarkers to distinguish brucellosis patients from healthy people.
9.Effects of Jiaohong Pills and Its Prescription on Scopolamine-induced Alzheimer's Disease Mice
Lijinchan DONG ; Weiyan CAI ; Li FENG ; Qing YANG ; Mengting LI ; Yanli WANG ; Hong ZHANG ; Qi LI ; Xiaogang WENG ; Yajie WANG ; Xiaoxin ZHU ; Xiaoru HU ; Ying CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(2):37-45
ObjectiveTo investigate the effects of Jiaohong pills (JHP) and its prescription, Pericarpium Zanthoxyli (PZ) and Rehmanniae Radix (RR) cognitive dysfunction in scopolamine-induced Alzheimer's disease (AD) mice and its mechanism through pharmacodynamic and metabolomics study. MethodThe animal model of AD induced by scopolamine was established and treated with PZ, RG and JHP, respectively. The effects of JHP and its formulations were investigated by open field test, water maze test, object recognition test, avoidance test, cholinergic system and oxidative stress related biochemical test. Untargeted metabolomics analysis of cerebral cortex was performed by ultra-performance liquid chromatography-Quadrupole/Orbitrap high resolution mass spectrometry (UPLC Q-Exactive Orbitrap MS). ResultThe behavioral data showed that, compared with the model group, the discrimination indexes of the high dose of JHP, PZ and RR groups was significantly increased (P<0.05). The staging rate of Morris water maze test in the PZ, RR, high and low dose groups of JHP was significantly increased (P<0.05, P<0.01), the crossing numbers in the PZ, JHP high and low dose groups were significantly increased (P<0.05, P<0.01); the number of errors in the avoidance test were significantly reduced in the PZ and high-dose JHP groups (P<0.01), and the error latencies were significantly increased in the JHP and its prescription drug groups (P<0.01). Compared with the model group, the activities of acetylcholinesterase in the cerebral cortex of the two doses of JHP group and the PZ group were significantly increased (P<0.05, P<0.01), and the activity of acetylcholinesterase in the high-dose JHP group was significantly decreased (P<0.05), and the level of acetylcholine was significantly increased (P<0.01). At the same time, the contents of malondialdehyde in the serum of the two dose groups of JHP decreased significantly (P<0.05, P<0.01). The results of metabolomics study of cerebral cortex showed that 149 differential metabolites were identified between the JHP group and the model group, which were involved in neurotransmitter metabolism, energy metabolism, oxidative stress and amino acid metabolism. ConclusionJHP and its prescription can antagonize scopolamine-induced cognitive dysfunction, regulate cholinergic system, and reduce oxidative stress damage. The mechanism of its therapeutic effect on AD is related to the regulation of neurotransmitter, energy, amino acid metabolism, and improvement of oxidative stress.
10.Results of scoliosis screening among primary and middle school students in Chuzhou City
LIANG Wei ; REN Mengting ; ZHANG Wenke ; YANG Lin ; WANG Hongyu
Journal of Preventive Medicine 2024;36(7):607-610
Objective:
To investigate the screening results of adolescent scoliosis in Chuzhou City, Anhui Province, and analyze the influencing factors for scoliosis, so as to provide insights into the prevention and control of scoliosis among adolescents.
Methods:
Students were selected from six primary and middle schools in Chuzhou City using the stratified random cluster sampling method from April to June 2023. Demographic information, daily behaviors and postures, and exercise status were collected through questionnaire surveys. Scoliosis was screened and diagnosed according to the Screening for Abnormal Spinal Curvature in Children and Adolescents. Influencing factors for scoliosis among primary and middle school students were identified using a multivariable logistic regression model.
Results:
A total of 1 823 questionnaires were allocated, and 1 768 effective questionnaires were recovered, with an effective response rate of 96.98%. There were 537 primary school students, 1 000 junior high school students and 231 senior high school students, with an average age of (13.40±1.92) years. There were 948 male students (53.62%) and 820 female students (46.38%). A total of 131 cases of scoliosis were screened positive, with a positive rate of 7.41%. The results of multivariable logistic regression analysis showed that gender (female, OR=1.759, 95%CI: 1.135-2.727), body mass index (OR=0.593, 95%CI: 0.538-0.654), sleeping position (side lying, OR=0.598, 95%CI: 0.377-0.951; prone lying, OR=2.336, 95%CI: 1.201-4.545), frequency of reading in bed (often, OR=2.099, 95%CI: 1.201-3.670), way of carrying backpack (shoulders, OR=0.580, 95%CI: 0.370-0.908), and exercise level (OR=0.428, 95%CI: 0.296-0.618) were influencing factors of scoliosis among primary and middle school students.
Conclusion
The positive rate of scoliosis screening among primary and middle school students in Chuzhou City was 7.41%, which was influenced by gender, age, body mass index, sleeping posture, reading in bed, way of carrying backpack and exercise level.


Result Analysis
Print
Save
E-mail