5.Research progress on ionizing radiation exposure and thyroid cancer
JIANG Xinyue ; LIU Jienan ; GAO Meiling ; WANG Yuchao ; HONG Yina ; YAN Jianbo
Journal of Preventive Medicine 2025;37(5):471-476,480
Thyroid cancer is caused by multiple factors, including genetics, environment, metabolism, and the immune microenvironment, among which ionizing radiation exposure is an important risk factor for thyroid cancer. As one of the most sensitive target organs of ionizing radiation, the thyroid gland may have different risks of thyroid cancer caused by different types of ionizing radiation exposures, such as medical exposure, occupational exposure, and emergency exposure. The sensitivity of children and adolescents are higher than that of adults. The dose-response relationship still needs to be further explored. The molecular mechanism between ionizing radiation and the increased risk of thyroid cancer is complex, which may involve DNA damage and repair abnormalities, gene mutations, non-coding RNA regulation, DNA methylation, cell cycle regulation imbalance, and immune microenvironment changes. This article reviews the risk and molecular mechanisms associated with different types of ionizing radiation exposure in thyroid cancer, based on literature retrieved from CNKI and PubMed databases. It aims to provide a theoretical basis for the early monitoring, prevention, and intervention of thyroid cancer related to ionizing radiation exposure.
6.Advances in omalizumab treatment for IgE-mediated food allergies
Siqi WANG ; Ling YE ; Meiling JIN
Chinese Journal of Clinical Medicine 2025;32(4):675-684
The increasing prevalence of food allergies significantly affects both the physical and mental health of patients, while concurrently imposing a substantial economic burden on a global scale. Immunoglobulin E (IgE)-mediated food allergies typically manifest as acute reactions and may lead to severe allergic responses. Previous treatment strategies have been predominantly centered on allergen avoidance and oral immunotherapy (OIT), resulting in augmented economic and psychological burdens. In recent years, omalizumab, the anti-IgE monoclonal antibody, has emerged as a treatment option, either as monotherapy or in combination with OIT, for patients with IgE-mediated food allergies. Omalizumab holds promise in augmenting allergen tolerance, accelerating desensitization processes, and mitigating adverse effects associated with OIT. Nonetheless, a multitude of unresolved inquiries persist concerning the practical applications of omalizumab, necessitating additional real world studies for clarification.
8.Autophagy in skeletal muscle dysfunction of chronic obstructive pulmonary disease: implications, mechanisms, and perspectives.
Xiaoyu HAN ; Peijun LI ; Meiling JIANG ; Yuanyuan CAO ; Yingqi WANG ; Linhong JIANG ; Xiaodan LIU ; Weibing WU
Journal of Zhejiang University. Science. B 2025;26(3):227-239
Skeletal muscle dysfunction is a common extrapulmonary comorbidity of chronic obstructive pulmonary disease (COPD) and is associated with decreased quality-of-life and survival in patients. The autophagy lysosome pathway is one of the proteolytic systems that significantly affect skeletal muscle structure and function. Intriguingly, both promoting and inhibiting autophagy have been observed to improve COPD skeletal muscle dysfunction, yet the mechanism is unclear. This paper first reviewed the effects of macroautophagy and mitophagy on the structure and function of skeletal muscle in COPD, and then explored the mechanism of autophagy mediating the dysfunction of skeletal muscle in COPD. The results showed that macroautophagy- and mitophagy-related proteins were significantly increased in COPD skeletal muscle. Promoting macroautophagy in COPD improves myogenesis and replication capacity of muscle satellite cells, while inhibiting macroautophagy in COPD myotubes increases their diameters. Mitophagy helps to maintain mitochondrial homeostasis by removing impaired mitochondria in COPD. Autophagy is a promising target for improving COPD skeletal muscle dysfunction, and further research should be conducted to elucidate the specific mechanisms by which autophagy mediates COPD skeletal muscle dysfunction, with the aim of enhancing our understanding in this field.
Pulmonary Disease, Chronic Obstructive/physiopathology*
;
Autophagy/physiology*
;
Humans
;
Muscle, Skeletal/pathology*
;
Mitophagy
;
Animals
;
Mitochondria/metabolism*
;
Lysosomes
9.Decreased neurotensin induces ovulatory dysfunction via the NTSR1/ERK/EGR1 axis in polycystic ovary syndrome.
Dongshuang WANG ; Meiling ZHANG ; Wang-Sheng WANG ; Weiwei CHU ; Junyu ZHAI ; Yun SUN ; Zi-Jiang CHEN ; Yanzhi DU
Frontiers of Medicine 2025;19(1):149-169
Polycystic ovary syndrome (PCOS) is the predominant cause of subfertility in reproductive-aged women; however, its pathophysiology remains unknown. Neurotensin (NTS) is a member of the gut-brain peptide family and is involved in ovulation; its relationship with PCOS is unclear. Here, we found that NTS expression in ovarian granulosa cells and follicular fluids was markedly decreased in patients with PCOS. In the in vitro culture of cumulus-oocyte complexes, the neurotensin receptor 1 (NTSR1) antagonist SR48692 blocked cumulus expansion and oocyte meiotic maturation by inhibiting metabolic cooperation and damaging the mitochondrial structure in oocytes and surrounding cumulus cells. Furthermore, the ERK1/2-early growth response 1 pathway was found to be a key downstream mediator of NTS/NTSR1 in the ovulatory process. Animal studies showed that in vivo injection of SR48692 in mice reduced ovulation efficiency and contributed to irregular estrus cycles and polycystic ovary morphology. By contrast, NTS partially ameliorated the ovarian abnormalities in mice with dehydroepiandrosterone-induced PCOS. Our findings highlighted the critical role of NTS reduction and consequent abnormal NTSR1 signaling in the ovulatory dysfunction of PCOS, suggesting a potential strategy for PCOS treatment.
Polycystic Ovary Syndrome/physiopathology*
;
Female
;
Animals
;
Neurotensin/metabolism*
;
Receptors, Neurotensin/antagonists & inhibitors*
;
Mice
;
Ovulation/drug effects*
;
Humans
;
Granulosa Cells/metabolism*
;
Adult
;
Oocytes/metabolism*
;
MAP Kinase Signaling System
;
Signal Transduction
;
Follicular Fluid/metabolism*
;
Disease Models, Animal
;
Gonadotropin-Releasing Hormone/analogs & derivatives*
10.Development of an Integrated Disposable Device for SARS-CoV-2 Nucleic Acid Extraction and Detection
Ma JING ; Hao YANZHE ; Hou MEILING ; Zhang XIAOSHAN ; Liu JINGDUAN ; Meng HAODI ; Chang JIANGBO ; Ma XUEJUN ; Liu JIHUA ; Ying QINGJIE ; Wang XIANHUA ; Li HONGXIA ; Cao YUXI ; Zhang XIAOGUANG
Biomedical and Environmental Sciences 2024;37(6):639-646
Objective To develop a highly sensitive and rapid nucleic acid detection method for the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2). Methods We designed,developed,and manufactured an integrated disposable device for SARS-CoV-2 nucleic acid extraction and detection.The precision of the liquid transfer and temperature control was tested.A comparison between our device and a commercial kit for SARS-Cov-2 nucleic acid extraction was performed using real-time fluorescence reverse transcription polymerase chain reaction(RT-PCR).The entire process,from SARS-CoV-2 nucleic acid extraction to amplification,was evaluated. Results The precision of the syringe transfer volume was 19.2±1.9 μL(set value was 20),32.2±1.6(set value was 30),and 57.2±3.5(set value was 60).Temperature control in the amplification tube was measured at 60.0±0.0 ℃(set value was 60)and 95.1±0.2 ℃(set value was 95)respectively.SARS-Cov-2 nucleic acid extraction yield through the device was 7.10×106 copies/mL,while a commercial kit yielded 2.98×106 copies/mL.The mean time to complete the entire assay,from SARS-CoV-2 nucleic acid extraction to amplification detection,was 36 min and 45 s.The detection limit for SARS-CoV-2 nucleic acid was 250 copies/mL. Conclusion The integrated disposable devices may be used for SARS-CoV-2 Point-of-Care test(POCT).


Result Analysis
Print
Save
E-mail