1.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
2.Study on mechanism of naringin in alleviating cerebral ischemia/reperfusion injury based on DRP1/LRRK2/MCU axis.
Kai-Mei TAN ; Hong-Yu ZENG ; Feng QIU ; Yun XIANG ; Zi-Yang ZHOU ; Da-Hua WU ; Chang LEI ; Hong-Qing ZHAO ; Yu-Hong WANG ; Xiu-Li ZHANG
China Journal of Chinese Materia Medica 2025;50(9):2484-2494
This study aims to investigate the molecular mechanism by which naringin alleviates cerebral ischemia/reperfusion(CI/R) injury through DRP1/LRRK2/MCU signaling axis. A total of 60 SD rats were randomly divided into the sham group, the model group, the sodium Danshensu group, and low-, medium-, and high-dose(50, 100, and 200 mg·kg~(-1)) naringin groups, with 10 rats in each group. Except for the sham group, a transient middle cerebral artery occlusion/reperfusion(tMCAO/R) model was established in SD rats using the suture method. Longa 5-point scale was used to assess neurological deficits. 2,3,5-Triphenyl tetrazolium chloride(TTC) staining was used to detect the volume percentage of cerebral infarction in rats. Hematoxylin-eosin(HE) staining and Nissl staining were employed to assess neuronal structural alterations and the number of Nissl bodies in cortex, respectively. Western blot was used to determine the protein expression levels of B-cell lymphoma-2 gene(Bcl-2), Bcl-2-associated X protein(Bax), cleaved cysteine-aspartate protease-3(cleaved caspase-3), mitochondrial calcium uniporter(MCU), microtubule-associated protein 1 light chain 3(LC3), and P62. Mitochondrial structure and autophagy in cortical neurons were observed by transmission electron microscopy. Immunofluorescence assay was used to quantify the fluorescence intensities of MCU and mitochondrial calcium ion, as well as the co-localization of dynamin-related protein 1(DRP1) with leucine-rich repeat kinase 2(LRRK2) and translocase of outer mitochondrial membrane 20(TOMM20) with LC3 in cortical mitochondria. The results showed that compared with the model group, naringin significantly decreased the volume percentage of cerebral infarction and neurological deficit score in tMCAO/R rats, alleviated the structural damage and Nissl body loss of cortical neurons in tMCAO/R rats, inhibited autophagosomes in cortical neurons, and increased the average diameter of cortical mitochondria. The Western blot results showed that compared to the sham group, the model group exhibited increased levels of cleaved caspase-3, Bax, MCU, and the LC3Ⅱ/LC3Ⅰ ratio in the cortex and reduced protein levels of Bcl-2 and P62. However, naringin down-regulated the protein expression of cleaved caspase-3, Bax, MCU and the ratio of LC3Ⅱ/LC3Ⅰ ratio and up-regulated the expression of Bcl-2 and P62 proteins in cortical area. In addition, immunofluorescence analysis showed that compared with the model group, naringin and positive drug treatments significantly decreased the fluorescence intensities of MCU and mitochondrial calcium ion. Meanwhile, the co-localization of DRP1 with LRRK2 and TOMM20 with LC3 in cortical mitochondria was also decreased significantly after the intervention. These findings suggest that naringin can alleviate cortical neuronal damage in tMCAO/R rats by inhibiting DRP1/LRRK2/MCU-mediated mitochondrial fragmentation and the resultant excessive mitophagy.
Animals
;
Rats, Sprague-Dawley
;
Reperfusion Injury/genetics*
;
Flavanones/administration & dosage*
;
Rats
;
Dynamins/genetics*
;
Male
;
Brain Ischemia/genetics*
;
Protein Serine-Threonine Kinases/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
3.Rapid characterization and identification of non-volatile components in Rhododendron tomentosum by UHPLC-Q-TOF-MS method.
Su-Ping XIAO ; Long-Mei LI ; Bin XIE ; Hong LIANG ; Qiong YIN ; Jian-Hui LI ; Jie DU ; Ji-Yong WANG ; Run-Huai ZHAO ; Yan-Qin XU ; Yun-Bo SUN ; Zong-Yuan LU ; Peng-Fei TU
China Journal of Chinese Materia Medica 2025;50(11):3054-3069
This study aimed to characterize and identify the non-volatile components in aqueous and ethanolic extracts of the stems and leaves of Rhododendron tomentosum by using sensitive and efficient ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS) combined with a self-built information database. By comparing with reference compounds, analyzing fragment ion information, searching relevant literature, and using a self-built information database, 118 compounds were identified from the aqueous and ethanolic extracts of R. tomentosum, including 35 flavonoid glycosides, 15 phenolic glycosides, 12 flavonoids, 7 phenolic acids, 7 phenylethanol glycosides, 6 tannins, 6 phospholipids, 5 coumarins, 5 monoterpene glycosides, 6 triterpenes, 3 fatty acids, and 11 other types of compounds. Among them, 102 compounds were reported in R. tomentosum for the first time, and 36 compounds were identified by comparing them with reference compounds. The chemical components in the ethanolic and aqueous extracts of R. tomentosum leaves and stems showed slight differences, with 84 common chemical components accounting for 71.2% of the total 118 compounds. This study systematically characterized and identified the non-volatile chemical components in the ethanolic and aqueous extracts of R. tomentosum for the first time. The findings provide a reference for active ingredient research, quality control, and product development of R. tomentosum.
Rhododendron/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Plant Leaves/chemistry*
4.Plastrum Testudinis Stimulates Bone Formation through Wnt/β-catenin Signaling Pathway Regulated by miR-214.
Qing LIN ; Bi-Yi ZHAO ; Xiao-Yun LI ; Wei-Peng SUN ; Hong-Hao HUANG ; Yu-Mei YANG ; Hao-Yu WANG ; Xiao-Feng ZHU ; Li YANG ; Rong-Hua ZHANG
Chinese journal of integrative medicine 2025;31(8):707-716
OBJECTIVE:
To investigate the Wnt signaling pathway and miRNAs mechanism of extracts of Plastrum Testudinis (PT) in the treatment of osteoporosis (OP).
METHODS:
Thirty female Sprague Dawley rats were randomly divided into 5 groups by random number table method, including sham group, ovariectomized group (OVX), ovariectomized groups treated with high-, medium-, and low-dose PT (160, 80, 40 mg/kg per day, respectively), with 6 rats in each group. Except for the sham group, the other rats underwent bilateral ovariectomy to simulate OP and received PT by oral gavage for 10 consecutive weeks. After treatment, bone mineral density was measured by dual-energy X-ray absorptiometry; bone microstructure was analyzed by micro-computed tomography and hematoxylin and eosin staining; and the expressions of osteogenic differentiation-related factors were detected by immunochemistry, Western blot, and quantitative polymerase chain reaction. In addition, Dickkopf-1 (Dkk-1) was used to inhibit the Wnt signaling pathway in bone marrow mesenchymal stem cells (BMSCs) and miRNA overexpression was used to evaluate the effect of miR-214 on the osteogenic differentiation of BMSCs. Subsequently, PT extract was used to rescue the effects of Dkk-1 and miR-214, and its impacts on the osteogenic differentiation-related factors of BMSCs were evaluated.
RESULTS:
PT-M and PT-L significantly reduced the weight gain in OVX rats (P<0.05). PT also regulated the bone mass and bone microarchitecture of the femur in OVX rats, and increased the expressions of bone formation-related factors including alkaline phosphatase, bone morphogenetic protein type 2, collagen type I alpha 1, and runt-related transcription factor 2 when compared with the OVX group (P<0.05 or P<0.01). Meanwhile, different doses of PT significantly rescued the inhibition of Wnt signaling pathway-related factors in OVX rats, and increased the mRNA or protein expressions of Wnt3a, β-catenin, glycogen synthase kinase-3β, and low-density lipoprotein receptor-related protein 5 (P<0.05 or P<0.01). PT stimulated the osteogenic differentiation of BMSCs inhibited by Dkk-1 and activated the Wnt signaling pathway. In addition, the expression of miR-214 was decreased in OVX rats (P<0.01), and it was negatively correlated with the osteogenic differentiation of BMSCs (P<0.01). MiR-214 mimic inhibited Wnt signaling pathway in BMSCs (P<0.05 or P<0.01). Conversely, PT effectively counteracted the effect of miR-214 mimic, thereby activating the Wnt signaling pathway and stimulating osteogenic differentiation in BMSCs (P<0.05 or P<0.01).
CONCLUSION
PT stimulates bone formation in OVX rats through β-catenin-mediated Wnt signaling pathway, which may be related to inhibiting miR-214 in BMSCs.
Animals
;
MicroRNAs/genetics*
;
Female
;
Rats, Sprague-Dawley
;
Wnt Signaling Pathway/genetics*
;
Osteogenesis/genetics*
;
Mesenchymal Stem Cells/cytology*
;
Cell Differentiation/drug effects*
;
Bone Density/drug effects*
;
Ovariectomy
;
Osteoporosis/drug therapy*
;
beta Catenin/metabolism*
;
Rats
;
Intercellular Signaling Peptides and Proteins/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
6.Waist Circumference Status and Distribution in Chinese Adults: China Nutrition and Health Surveillance (2015-2017).
Jing NAN ; Mu Lei CHEN ; Hong Tao YUAN ; Qiu Ye CAO ; Dong Mei YU ; Wei PIAO ; Fu Sheng LI ; Yu Xiang YANG ; Li Yun ZHAO ; Shu Ya CAI
Biomedical and Environmental Sciences 2025;38(6):757-762
7.Long-term hypomethylating agents in patients with myelodysplastic syndromes: a multi-center retrospective study
Xiaozhen LIU ; Shujuan ZHOU ; Jian HUANG ; Caifang ZHAO ; Lingxu JIANG ; Yudi ZHANG ; Chen MEI ; Liya MA ; Xinping ZHOU ; Yanping SHAO ; Gongqiang WU ; Xibin XIAO ; Rongxin YAO ; Xiaohong DU ; Tonglin HU ; Shenxian QIAN ; Yuan LI ; Xuefen YAN ; Li HUANG ; Manling WANG ; Jiaping FU ; Lihong SHOU ; Wenhua JIANG ; Weimei JIN ; Linjie LI ; Jing LE ; Wenji LUO ; Yun ZHANG ; Xiujie ZHOU ; Hao ZHANG ; Xianghua LANG ; Mei ZHOU ; Jie JIN ; Huifang JIANG ; Jin ZHANG ; Guifang OUYANG ; Hongyan TONG
Chinese Journal of Hematology 2024;45(8):738-747
Objective:To evaluate the efficacy and safety of hypomethylating agents (HMA) in patients with myelodysplastic syndromes (MDS) .Methods:A total of 409 MDS patients from 45 hospitals in Zhejiang province who received at least four consecutive cycles of HMA monotherapy as initial therapy were enrolled to evaluate the efficacy and safety of HMA. Mann-Whitney U or Chi-square tests were used to compare the differences in the clinical data. Logistic regression and Cox regression were used to analyze the factors affecting efficacy and survival. Kaplan-Meier was used for survival analysis. Results:Patients received HMA treatment for a median of 6 cycles (range, 4-25 cycles) . The complete remission (CR) rate was 33.98% and the overall response rate (ORR) was 77.02%. Multivariate analysis revealed that complex karyotype ( P=0.02, OR=0.39, 95% CI 0.18-0.84) was an independent favorable factor for CR rate. TP53 mutation ( P=0.02, OR=0.22, 95% CI 0.06-0.77) was a predictive factor for a higher ORR. The median OS for the HMA-treated patients was 25.67 (95% CI 21.14-30.19) months. HMA response ( P=0.036, HR=0.47, 95% CI 0.23-0.95) was an independent favorable prognostic factor, whereas complex karyotype ( P=0.024, HR=2.14, 95% CI 1.10-4.15) , leukemia transformation ( P<0.001, HR=2.839, 95% CI 1.64-4.92) , and TP53 mutation ( P=0.012, HR=2.19, 95% CI 1.19-4.07) were independent adverse prognostic factors. There was no significant difference in efficacy and survival between the reduced and standard doses of HMA. The CR rate and ORR of MDS patients treated with decitabine and azacitidine were not significantly different. The median OS of patients treated with decitabine was longer compared with that of patients treated with azacitidine (29.53 months vs 20.17 months, P=0.007) . The incidence of bone marrow suppression and pneumonia in the decitabine group was higher compared with that in the azacitidine group. Conclusion:Continuous and regular use of appropriate doses of hypomethylating agents may benefit MDS patients to the greatest extent if it is tolerated.
8.Application of MXenes in Tumor Therapy
Mei-Qing LIU ; Lu ZHAO ; Yun-Feng BAI ; Feng FENG
Progress in Biochemistry and Biophysics 2024;51(2):328-344
MXenes is an emerging two-dimensional (2D) material, which was composed of layered transition metal carbides and/or nitrides, have attracted enormous attention in the past decade since their innovative discovery by Gogotsi and Barsoum in 2011. The general formula of MXenes is Mn+1XnTx (n=1-4), where M represents transition metal elements (such as Ti, Nb, Ta, etc.), X represents carbon and/or nitrogen, and Tx represents surface terminations (such as —OH, —F, =O, etc.). In recent years, MXenes have been widely applied in the biological field due to their high biocompatibility, abundant surface groups, good conductivity and photothermal properties. Due to the strong absorption of laser in the near infrared region, strong X-ray attenuation ability and surface easily modified by various molecules or nanoparticles, MXenes have been used as photothermal agents and contrast agents in the tumor therapy and tumor diagnosis. This paper reviews the application of MXenes and MXenes-based composites in tumor therapy and active targeting tumor therapy. According to the modal of action on tumor cells, it was divided into monotherapy, bimodal therapy and trimodal therapy. Among them, the monotherapy mainly used the photothermal properties of MXenes for photothermal therapy, studies have found that MXenes QDs can be used for chemodynamic therapy. In addition, sonodynamic therapy can also be achieved by loading the sonosensitizers on the surface of MXenes. Bimodal therapy and trimodal therapy are mainly used to load anticancer drugs, photosensitizers, metal particles and other substances on the surface of MXenes to achieve combination therapy. In contrast to the limited treatment efficacy and possible side effects arising from monotherapy, the development of bimodal therapy and trimodal therapy may harbor the collective merits of respective individual treatments and give rise to much higher anticancer efficacy at lower dosage of therapeutic agents administered, thus avoiding high-dose-induced side effects. The combined use of multiple treatments displayed superior advantages over monotherapy in producing an improved therapy outcome. According to the modal of entry into tumor cells, it was divided into passive targeting and active targeting. Active targeting therapy was mainly divided into homologous targeting therapy and targeting agents targeting therapy. The strategy of homologous targeting therapy was to coat MXenes with tumor cell membrane and increased the uptake of MXenes by tumor cells. Targeting agents targeting therapy used targeting agents to specifically bind to the receptors on the surface of tumor cells, subsequently, the precise uptake of MXenes by tumor cells was achieved. Finally, the current challenges and future development trends of MXenes in preparation technology and tumor therapy are discussed.
9.TCM Guidelines for Diagnosis and Treatment of Chronic Cough in Children
Xi MING ; Liqun WU ; Ziwei WANG ; Bo WANG ; Jialin ZHENG ; Jingwei HUO ; Mei HAN ; Xiaochun FENG ; Baoqing ZHANG ; Xia ZHAO ; Mengqing WANG ; Zheng XUE ; Ke CHANG ; Youpeng WANG ; Yanhong QIN ; Bin YUAN ; Hua CHEN ; Lining WANG ; Xianqing REN ; Hua XU ; Liping SUN ; Zhenqi WU ; Yun ZHAO ; Xinmin LI ; Min LI ; Jian CHEN ; Junhong WANG ; Yonghong JIANG ; Yongbin YAN ; Hengmiao GAO ; Hongmin FU ; Yongkun HUANG ; Jinghui YANG ; Zhu CHEN ; Lei XIONG
Journal of Nanjing University of Traditional Chinese Medicine 2024;40(7):722-732
Following the principles of evidence-based medicine,in accordance with the structure and drafting rules of standardized documents,based on literature research,according to the characteristics of chronic cough in children and issues that need to form a consensus,the TCM Guidelines for Diagnosis and Treatment of Chronic Cough in Children was formulated based on the Delphi method,expert discussion meetings,and public solicitation of opinions.The guideline includes scope of application,terms and definitions,eti-ology and diagnosis,auxiliary examination,treatment,prevention and care.The aim is to clarify the optimal treatment plan of Chinese medicine in the diagnosis and treatment of this disease,and to provide guidance for improving the clinical diagnosis and treatment of chronic cough in children with Chinese medicine.
10.Clinical Observation of Acupuncture Combined with Acupoint Catgut Embedding Therapy on Back-Shu and Front-Mu Points and External Application on Shenque Point for Premature Ovarian Failure
Xue-Juan ZHAO ; Hong-Wei YANG ; Xiu-Ming LIU ; Rui-Yang SHEN ; Mei-Xia WEI ; Gui-Yun TAN
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(11):2906-2911
Objective To observe the clinical efficacy of acupuncture combined with acupoint catgut embedding therapy on back-shu and front-mu points and external application on shenque(RN8)point for premature ovarian failure(POF).Methods A total of 62 patients with POF were randomly divided into the observation group and the control group,with 31 patients in each group.The observation group was treated with acupuncture combined with acupoint catgut embedding therapy on back-shu and front-mu points and external application on shenque point,and the control group was treated with hormone replacement therapy.After three months of treatment,the clinical efficacy of the two groups was evaluated,and the changes in the traditional Chinese medicine(TCM)syndrome scores,as well as the ovarian volume,number of antral follicle,and antral follicle diameter of the patients in the two groups before and after treatment were observed.The changes of serum follicle stimulating hormone(FSH),luteinizing hormone(LH)and estradiol(E2)levels before and after treatment were compared between the two groups.Results(1)The total effective rate was 93.55%(29/31)in the observation group and 80.64%(25/31)in the control group.The efficacy of the observation group was significantly superior to that of the control group,and the difference was statistically significant(P<0.05).(2)After treatment,the serum FSH,LH and E2 levels of patients in the two groups were significantly improved(P<0.05),and the improvement in the observation group was significantly superior to that in the control group,with statistically significant differences(P<0.05).(3)After treatment,ovarian volume,number of antral follicle,and antral follicle diameter were significantly improved in the two groups(P<0.05),and the improvement in the observation group was significantly superior to that in the control group,and the difference was statistically significant(P<0.05).Conclusion The treatment of POF with acupuncture combined with acupoint catgut embedding therapy on back-shu and front-mu points and external application on shenque point can significantly improve the clinical symptoms of the patients,conducive to the recovery of ovarian function,and significantly improve the sex hormone levels of the patients,with precise clinical efficacy.

Result Analysis
Print
Save
E-mail