2.Induction of Bronchial Tolerance After 1 Cycle of Monophosphoryl-A-Adjuvanted Specific Immunotherapy in Children With Grass Pollen Allergies.
Martin ROSEWICH ; Katharina GIROD ; Stefan ZIELEN ; Ralf SCHUBERT ; Johannes SCHULZE
Allergy, Asthma & Immunology Research 2016;8(3):257-263
PURPOSE: Subcutaneous allergen-specific immunotherapy (SCIT) is a well-established and clinically effective method to treat allergic diseases, such as rhinitis and asthma. It remains unclear how soon after initiation of an ultra-short course of grass pollen immunotherapy adjuvanted with monophosphoryl lipid A (MPL)-specific bronchial tolerance can be induced. METHODS: In a prospective study of 69 children double-sensitized to birch and grass pollens (51 males, average age 11.1 years), development of bronchial tolerance after 1 cycle of SCIT for grass was evaluated. In all the patients, the bronchial allergen provocation test (BAP) was performed before and after treatment. According to the results of the first BAP, the patients were divided into 2 groups: those showing a negative BAP with a decrease in FEV1 of <20% (seasonal allergic rhinitis [SAR] group, n=47); and those showing a positive BAP with a decrease in FEV1 of > or =20% (SAR with allergic asthma [SAR and Asthma] group, n=22). All the patients received MPL-adjuvanted, ultra-short course immunotherapy for birch, but only those with a positive BAP to grass received MPL-SCIT for grass. RESULTS: After the pollen season, the BAP in the SAR group remained unchanged, while it was improved in the SAR and Asthma group (decrease in FEV1 of 28.8% vs 12.5%, P<0.01). The IgG4 levels increased after SCIT (median before SCIT 0.34 to 11.4 after SCIT), whereas the total and specific IgE levels remained unchanged. CONCLUSIONS: After 1 cycle of MPL-SCIT, specific bronchial tolerance may be significantly induced, whereas in patients without SCIT, bronchial hyperactivity may remain unchanged.
Asthma
;
Betula
;
Bronchial Provocation Tests
;
Child*
;
Desensitization, Immunologic
;
Humans
;
Immunoglobulin E
;
Immunoglobulin G
;
Immunotherapy*
;
Lipid A
;
Male
;
Poaceae*
;
Pollen*
;
Prospective Studies
;
Rhinitis
;
Rhinitis, Allergic, Seasonal*
;
Seasons
3.Modulation of cartilage differentiation by melanoma inhibiting activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP).
Thomas SCHUBERT ; Jacqueline SCHLEGEL ; Rainer SCHMID ; Alfred OPOLKA ; Susanne GRASSEL ; Martin HUMPHRIES ; Anja Katrin BOSSERHOFF
Experimental & Molecular Medicine 2010;42(3):166-174
Melanoma inhibiting activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP) is a small soluble protein secreted from malignant melanoma cells and from chondrocytes. Recently, we revealed that MIA/CD-RAP can modulate bone morphogenetic protein (BMP)2-induced osteogenic differentiation into a chondrogenic direction. In the current study we aimed to find the molecular details of this MIA/CD-RAP function. Direct influence of MIA on BMP2 by protein-protein-interaction or modulating SMAD signaling was ruled out experimentally. Instead, we revealed inhibition of ERK signaling by MIA/CD-RAP. This inhibition is regulated via binding of MIA/CD-RAP to integrin alpha5 and abolishing its activity. Active ERK signaling is known to block chondrogenic differentiation and we revealed induction of aggrecan expression in chondrocytes by treatment with MIA/CD-RAP or PD098059, an ERK inhibitor. In in vivo models we could support the role of MIA/CD-RAP in influencing osteogenic differentiation negatively. Further, MIA/CD-RAP-deficient mice revealed an enhanced calcified cartilage layer of the articular cartilage of the knee joint and disordered arrangement of chondrocytes. Taken together, our data indicate that MIA/CD-RAP stabilizes cartilage differentiation and inhibits differentiation into bone potentially by regulating signaling processes during differentiation.
Animals
;
Bone Morphogenetic Proteins/metabolism
;
Cartilage/*cytology/metabolism
;
*Cell Differentiation
;
Chondrocytes/cytology/enzymology
;
Extracellular Matrix Proteins/deficiency/*metabolism
;
Extracellular Signal-Regulated MAP Kinases/metabolism
;
Humans
;
Integrin alpha5/metabolism
;
Mesenchymal Stem Cells/cytology/metabolism
;
Mice
;
Neoplasm Proteins/deficiency/*metabolism
;
Osteogenesis
;
Protein Binding
;
Signal Transduction
;
Smad Proteins/metabolism