1.Synthesis of a new chitosan derivative and assay of Escherichia coli adsorption
Bingbing SHANG ; Jun SHA ; Yang LIU ; Qin TU ; Manlin LU ; Jinyi WANG
Journal of Pharmaceutical Analysis 2011;01(1):39-45
A new chitosan derivative is prepared using chitosan.Ethyl chlorocarbonate was first introduced to the hydroxyl group of phthaloylchitosan through a nucleophilic reaction.Hydrazine was then added to recover the amino groups of chitosan and promote cross-linking.The structure of this new chitosan derivative was characterized by Fourier transform infrared(FT-IR)and proton nuclear magnetic resonance(1H NMR)spectroscopy,and its physical properties were determined by X-ray diffraction(XRD),differential scanning calorimetry(DSC),and thermogravimetric analysis(TGA).The thermal and chemical stabilities of the new derivative were improved compared with those of native chitosan.Assay of Escherichia coli adhesion on a film based on this chitosan derivative showed good adsorption and biofilm formation.
2.Effects of gabapentin on high voltage active calcium currents in injured dorsal root ganglion neurons in a rat model of neuropathic pain
Xiaodong CHEN ; Minmin ZHU ; Shanshan AN ; Qiang WANG ; Liang LU ; Qin SUN ; Hang XIAO ; Jianguo XU ; Manlin DUAN
Chinese Journal of Anesthesiology 2010;30(1):56-59
Objective To investigate the effect of gabapentin on high voltage active calcium currents in the injured dorsal root ganglion (DRG) neurons in a rat model of neuropathic pain.Methods Pathogen-free male SD rats aged 4-6 weeks were used in this study. The animals were anesthetized with intraperitoneal pentobarbital soclium 50 mg/kg. L_5 spinal nerve was ligated between DRG and sciatic nerve and cut distal to the ligature. The animals were decapitated on the 14th postoperative day. L_5 DRG was isolated and the neurons in the ganglion were enzymatically dissociated. The high voltage active calcium current was recorded using whole-cell patch-clamp technique.Results Gabapentin inhibited the peak calcium current in the injured DEG neurons. Peak calcium current was decreased by gabapentin 100 μmol/L and both activation and steady-state inactivation curve shifted to more hyperpolarized potentials. Conclusion Gabapentin can inhibit high voltage active in the injured DRG neurons in a rat model of neuropathic pain. The alteration in the inactivation of the electrophysiological properties may be involved in the mechanism.
3.Isotoosendanin exerts inhibition on triple-negative breast cancer through abrogating TGF-β-induced epithelial-mesenchymal transition via directly targeting TGFβR1.
Jingnan ZHANG ; Ze ZHANG ; Zhenlin HUANG ; Manlin LI ; Fan YANG ; Zeqi WU ; Qian GUO ; Xiyu MEI ; Bin LU ; Changhong WANG ; Zhengtao WANG ; Lili JI
Acta Pharmaceutica Sinica B 2023;13(7):2990-3007
As the most aggressive breast cancer, triple-negative breast cancer (TNBC) is still incurable and very prone to metastasis. The transform growth factor β (TGF-β)-induced epithelial-mesenchymal transition (EMT) is crucially involved in the growth and metastasis of TNBC. This study reported that a natural compound isotoosendanin (ITSN) reduced TNBC metastasis by inhibiting TGF-β-induced EMT and the formation of invadopodia. ITSN can directly interact with TGF-β receptor type-1 (TGFβR1) and abrogated the kinase activity of TGFβR1, thereby blocking the TGF-β-initiated downstream signaling pathway. Moreover, the ITSN-provided inhibition on metastasis obviously disappeared in TGFβR1-overexpressed TNBC cells in vitro as well as in mice bearing TNBC cells overexpressed TGFβR1. Furthermore, Lys232 and Asp351 residues in the kinase domain of TGFβR1 were found to be crucial for the interaction of ITSN with TGFβR1. Additionally, ITSN also improved the inhibitory efficacy of programmed cell death 1 ligand 1 (PD-L1) antibody for TNBC in vivo via inhibiting the TGF-β-mediated EMT in the tumor microenvironment. Our findings not only highlight the key role of TGFβR1 in TNBC metastasis, but also provide a leading compound targeting TGFβR1 for the treatment of TNBC metastasis. Moreover, this study also points out a potential strategy for TNBC treatment by using the combined application of anti-PD-L1 with a TGFβR1 inhibitor.