1.Preliminary efficacy and safety of a dose-intensified C5VD regimen in 24 children with locally advanced hepatoblastoma.
Jia-Xin PENG ; Can HUANG ; An-An ZHANG ; Ya-Li HAN ; Hai-Shan RUAN ; Xiao-Xia WANG ; Min XU ; Yuan XIN ; Li-Ting YU ; Zhi-Bao LYU ; Sha-Yi JIANG ; Yi-Jin GAO
Chinese Journal of Contemporary Pediatrics 2025;27(10):1247-1252
OBJECTIVES:
To assess the preliminary efficacy and safety of a dose-intensified C5VD regimen (cisplatin, 5-fluorouracil, vincristine, and doxorubicin) in children with locally advanced hepatoblastoma.
METHODS:
This prospective study enrolled 24 children with newly diagnosed, locally advanced hepatoblastoma who received the dose-intensified C5VD regimen at Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, and Shanghai Children's Hospital between January 2020 and December 2023. Clinical characteristics, treatment outcomes, and chemotherapy-related toxicities were analyzed.
RESULTS:
Of the 24 patients, 13 were male and 11 were female, with a median age at diagnosis of 18.7 months (range: 3.5-79.4 months). All patients achieved complete macroscopic resection of hepatic lesions without liver transplantation. Serum alpha-fetoprotein levels decreased significantly after two chemotherapy cycles. During a median follow-up of 38.4 months (range: 15.8-50.7 months), all patients maintained continuous complete remission, with 3-year event-free survival and overall survival rates of 100%. Across 144 chemotherapy cycles, the incidence rates of grade 3-4 neutropenia, thrombocytopenia, and infections were 97%, 77%, and 71%, respectively; no treatment-related deaths occurred. Notably, 5 patients (21%) developed Brock grade ≥3 hearing loss, of whom 1 required a hearing aid.
CONCLUSIONS
The dose-intensified C5VD regimen demonstrates significant efficacy with an overall favorable safety profile in the treatment of newly diagnosed, locally advanced pediatric hepatoblastoma. Grade 3-4 myelosuppression and infection are the predominant toxicities. However, high‑dose cisplatin-induced ototoxicity remains a concern, highlighting the need for improved otoprotective strategies.
Humans
;
Hepatoblastoma/pathology*
;
Male
;
Female
;
Infant
;
Liver Neoplasms/pathology*
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Child, Preschool
;
Prospective Studies
;
Doxorubicin/adverse effects*
;
Child
;
Cisplatin/adverse effects*
;
Vincristine/adverse effects*
;
Fluorouracil/adverse effects*
2.Advances in inflammaging in liver disease.
Yanping XU ; Luyi CHEN ; Weili LIU ; Liying CHEN
Journal of Zhejiang University. Medical sciences 2025;54(1):90-98
Inflammaging is a process of cellular dysfunction associated with chronic inflammation, which plays a significant role in the onset and progression of liver diseases. Research on its mechanisms has become a hotspot. In viral hepatitis, inflammaging primarily involve oxidative stress, cell apoptosis and necrosis, as well as gut microbiota dysbiosis. In non-alcoholic fatty liver disease, inflammaging is more complex, involving insulin resistance, fat deposition, lipid metabolism disorders, gut microbiota dysbiosis, and abnormalities in NAD+ metabolism. In liver tumors, inflammaging is characterized by weakening of tumor suppressive mechanisms, remodeling of the liver microenvironment, metabolic reprogramming, and enhanced immune evasion. Therapeutic strategies targeting inflammaging have been developing recently, and antioxidant therapy, metabolic disorder improvement, and immunotherapy are emerging as important interventions for liver diseases. This review focuses on the mechanisms of inflammaging in liver diseases, aiming to provide novel insights for the prevention and treatment of liver diseases.
Humans
;
Liver Diseases/pathology*
;
Inflammation
;
Oxidative Stress
;
Non-alcoholic Fatty Liver Disease
;
Liver Neoplasms
;
Gastrointestinal Microbiome
3.Primary hepatic neuroendocrine neoplasms: a case series analysis of 10 patients and literature review.
Yin JIANG ; Yudi MENG ; Shiwei ZHANG ; Yongtao WANG ; Chunnian WANG ; Caide LU
Journal of Zhejiang University. Medical sciences 2025;54(5):661-667
The clinical data of 10 patients with pathologically confirmed primary hepatic neuroendocrine neoplasms (PHNENs) were retrospectively analyzed. The cohort included 8 males and 2 females, with a median age of 63 years. None presented with carcinoid syndrome. Three cases were detected incidentally during health check-ups, 2 presented with painless jaundice, and 5 reported abdominal distension or pain (1 with concurrent jaundice). Elevated tumor markers included carbohydrate antigen 19-9 in 4 cases, alpha-fetoprotein in 2 cases, and neuron-specific enolase in 1 case. All patients underwent surgical resection, including hepatectomy and hilar cholangiocarcinoma resection, combining with resection and reconstruction of right hepatic artery, resection of liver metastases and pancreaticoduodenectomy according to the extent of tumor invasion.Preoperative imaging failed to diagnose neuroendocrine neoplasms in all cases. Final pathological diagnoses were neuroendocrine tumor (NET) G2 in 5 cases, NET G3 in 1 case, and neuroendocrine carcinoma (NEC) in 4 cases. During the follow-up, 4 patients died and 6 survived. The study demonstrates that PHNENs lack specific clinical or imaging features, and the diagnosis relies on pathological examination after excluding metastatic disease. Radical resection remains the primary treatment, with prognosis varying significantly by tumor grade.
Humans
;
Middle Aged
;
Male
;
Female
;
Neuroendocrine Tumors/pathology*
;
Liver Neoplasms/pathology*
;
Retrospective Studies
;
Aged
;
Adult
4.Identification of prognosis-related key genes in hepatocellular carcinoma based on bioinformatics analysis.
Qian XIE ; Yingshan ZHU ; Ge HUANG ; Yue ZHAO
Journal of Central South University(Medical Sciences) 2025;50(2):167-180
OBJECTIVES:
Hepatocellular carcinoma is one of the most common primary malignant tumors with the third highest mortality rate worldwide. This study aims to identify key genes associated with hepatocellular carcinoma prognosis using the Gene Expression Omnibus (GEO) database and provide a theoretical basis for discovering novel prognostic biomarkers for hepatocellular carcinoma.
METHODS:
Hepatocellular carcinoma-related datasets were retrieved from the GEO database. Differentially expressed genes (DEGs) were identified using the GEO2R tool. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). A protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), and key genes were identified using Cytoscape software. The University of Alabama at Birmingham Cancer Data Analysis Resource (UALCAN) was used to analyze the expression levels of key genes in normal and hepatocellular carcinoma tissues, as well as their associations with pathological grade, clinical stage, and patient survival. The Human Protein Atlas (THPA) was used to further validate the impact of key genes on overall survival. Expression levels of key genes in the blood of hepatocellular carcinoma patients were evaluated using the expression atlas of blood-based biomarkers in the early diagnosis of cancers (BBCancer).
RESULTS:
A total of 78 DEGs were identified from the GEO database. GO and KEGG analyses indicated that these genes may contribute to hepatocellular carcinoma progression by promoting cell division and regulating protein kinase activity. Sixteen key genes were screened via Cytoscape and validated using UALCAN and THPA. These genes were overexpressed in hepatocellular carcinoma tissues and were associated with disease progression and poor prognosis. Finally, BBCancer analysis showed that ASPM and NCAPG were also elevated in the blood of hepatocellular carcinoma patients.
CONCLUSIONS
This study identified 16 key genes as potential prognostic biomarkers for hepatocellular carcinoma, among which ASPM and NCAPG may serve as promising blood-based markers for hepatocellular carcinoma.
Humans
;
Carcinoma, Hepatocellular/mortality*
;
Liver Neoplasms/pathology*
;
Prognosis
;
Computational Biology/methods*
;
Protein Interaction Maps/genetics*
;
Biomarkers, Tumor/genetics*
;
Gene Expression Regulation, Neoplastic
;
Gene Expression Profiling
;
Gene Ontology
;
Databases, Genetic
5.A case report of malignant paraganglioma with lymph node and liver metastasis in the jugular foramen area.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(5):486-490
Objective:Paragangliomas (PGLs) are chromaffin cell tumors originating from paraganglia and are classified as neuroendocrine neoplasms.They predominantly occur along the distribution area of the paraganglia, commonly occurring between the ages of 20 and 40, with a slight male predominance.They are most frequently found in the axial regions from the skull base to the pelvic cavity. Paragangliomas in the head and neck region typically lack endocrine functionality and primarily manifest through local mass effects. However, clinical signs and symptoms alone cannot reliably distinguish between metastatic and non-metastatic cases. Clinically apparent metastatic paragangliomas are relatively rare. Herein, we present a case of a paraganglioma located in the region of the jugular foramen with liver, bone, and lymph node metastases, and discuss the treatment and prognosis of head and neck paragangliomas.
Humans
;
Head and Neck Neoplasms/pathology*
;
Jugular Foramina/pathology*
;
Liver Neoplasms/secondary*
;
Lymphatic Metastasis
;
Paraganglioma/pathology*
6.Integrated-omics analysis defines subtypes of hepatocellular carcinoma based on circadian rhythm.
Xiao-Jie LI ; Le CHANG ; Yang MI ; Ge ZHANG ; Shan-Shan ZHU ; Yue-Xiao ZHANG ; Hao-Yu WANG ; Yi-Shuang LU ; Ye-Xuan PING ; Peng-Yuan ZHENG ; Xia XUE
Journal of Integrative Medicine 2025;23(4):445-456
OBJECTIVE:
Circadian rhythm disruption (CRD) is a risk factor that correlates with poor prognosis across multiple tumor types, including hepatocellular carcinoma (HCC). However, its mechanism remains unclear. This study aimed to define HCC subtypes based on CRD and explore their individual heterogeneity.
METHODS:
To quantify CRD, the HCC CRD score (HCCcrds) was developed. Using machine learning algorithms, we identified CRD module genes and defined CRD-related HCC subtypes in The Cancer Genome Atlas liver HCC cohort (n = 369), and the robustness of this method was validated. Furthermore, we used bioinformatics tools to investigate the cellular heterogeneity across these CRD subtypes.
RESULTS:
We defined three distinct HCC subtypes that exhibit significant heterogeneity in prognosis. The CRD-related subtype with high HCCcrds was significantly correlated with worse prognosis, higher pathological grade, and advanced clinical stages, while the CRD-related subtype with low HCCcrds had better clinical outcomes. We also identified novel biomarkers for each subtype, such as nicotinamide n-methyltransferase and myristoylated alanine-rich protein kinase C substrate-like 1.
CONCLUSION
We classify the HCC patients into three distinct groups based on circadian rhythm and identify their specific biomarkers. Within these groups greater HCCcrds was associated with worse prognosis. This approach has the potential to improve prediction of an individual's prognosis, guide precision treatments, and assist clinical decision making for HCC patients. Please cite this article as: Li XJ, Chang L, Mi Y, Zhang G, Zhu SS, Zhang YX, et al. Integrated-omics analysis defines subtypes of hepatocellular carcinoma based on circadian rhythm. J Integr Med. 2025; 23(4): 445-456.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Circadian Rhythm/genetics*
;
Prognosis
;
Male
;
Female
;
Biomarkers, Tumor/genetics*
;
Middle Aged
;
Machine Learning
;
Computational Biology
7.Research progress on ferroptosis regulation in tumor immunity of hepatocellular carcinoma.
Yuqian MO ; Zhilin ZOU ; Erbao CHEN
Journal of Zhejiang University. Medical sciences 2024;53(6):715-725
Ferroptosis is a form of regulated cell death, which is dependent on iron metabolism imbalance and characterized by lipid peroxidation. Ferroptosis plays a crucial role in various pathological processes. Studies have shown that the occurrence of ferroptosis is closely associated with the progression of hepatocellular carcinoma (HCC). Ferroptosis is involved in regulating the lipid metabolism, iron homeostasis, mitochondrial metabolism, and redox processes in HCC. Additionally, ferroptosis plays a key role in HCC tumor immunity by modulating the phenotype and function of various immune cells in the tumor microenvironment, affecting tumor immune escape and progression. Ferroptosis-induced lipid peroxidation and oxidative stress can promote the polarization of M1 macrophages and enhance the pro-inflammatory response in tumors, inhibiting immune suppressive cells such as myeloid-derived suppressor cells and regulatory T cells to disrupt their immune suppression function. The regulation of expression of ferroptosis-related molecules such as GPX4 and SLC7A11 not only affects the sensitivity of tumor cells to immunotherapy but also directly influences the activity and survival of effector cells such as T cells and dendritic cells, further enhancing or weakening host antitumor immune response. Targeting ferroptosis has demonstrated significant clinical potential in HCC treatment. Induction of ferroptosis by nanomedicines and molecular targeting strategies can directly kill tumor cells or enhance antitumor immune responses. The integration of multimodal therapies with immunotherapy further expands the application of ferroptosis targeting as a cancer therapy. This article reviews the relationship between ferroptosis and antitumor immune responses and the role of ferroptosis in HCC progression from the perspective of tumor immune microenvironment, to provide insights for the development of antitumor immune therapies targeting ferroptosis.
Ferroptosis
;
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/metabolism*
;
Tumor Microenvironment/immunology*
;
Lipid Peroxidation
;
Immunotherapy
;
Oxidative Stress
;
Iron/metabolism*
;
Lipid Metabolism
;
Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism*
;
Macrophages/immunology*
;
Amino Acid Transport System y+
8.Ferroptosis and liver diseases.
Xin LI ; Liang TAO ; Meijuan ZHONG ; Qian WU ; Junjia MIN ; Fudi WANG
Journal of Zhejiang University. Medical sciences 2024;53(6):747-755
As the central organ of metabolism, the liver plays a pivotal role in the regulation of the synthesis and metabolism of various nutrients within the body. Ferroptosis, as a newly discovered type of programmed cell death caused by the accumulation of iron-dependent lipid peroxides, is involved in the physiological and pathological processes of a variety of acute and chronic liver diseases. Ferroptosis can accelerate the pathogenetic process of acute liver injury, metabolic associated fatty liver disease, alcoholic liver disease, viral hepatitis, and autoimmune hepatitis; while it can slower disease progression in advanced liver fibrosis and hepatocellular carcinoma. This suggests that targeted regulation of ferroptosis may impact the occurrence and development of various liver diseases. This article reviews the latest research progress of ferroptosis in various liver diseases, including acute liver injury, metabolic associated fatty liver disease, alcoholic liver disease, viral hepatitis, autoimmune hepatitis, liver fibrosis and hepatocellular carcinoma. It aims to provide insights for the prevention and treatment of acute and chronic liver diseases through targeting ferroptosis.
Humans
;
Liver Diseases/etiology*
;
Ferroptosis/physiology*
;
Liver Neoplasms/pathology*
;
Carcinoma, Hepatocellular/pathology*
;
Liver Cirrhosis/etiology*
;
Liver/pathology*
;
Hepatitis, Autoimmune/metabolism*
;
Liver Diseases, Alcoholic/metabolism*
9.Jiedu recipe, a compound Chinese herbal medicine, suppresses hepatocellular carcinoma metastasis by inhibiting the release of tumor-derived exosomes in a hypoxic microenvironment.
Wen-Tao JIA ; Shuang XIANG ; Jin-Bo ZHANG ; Jia-Ying YUAN ; Yu-Qian WANG ; Shu-Fang LIANG ; Wan-Fu LIN ; Xiao-Feng ZHAI ; Yan SHANG ; Chang-Quan LING ; Bin-Bin CHENG
Journal of Integrative Medicine 2024;22(6):696-708
OBJECTIVE:
Tumor-derived exosomes (TDEs) play crucial roles in intercellular communication. Hypoxia in the tumor microenvironment enhances secretion of TDEs and accelerates tumor metastasis. Jiedu recipe (JR), a traditional Chinese medicinal formula, has demonstrated efficacy in preventing the metastasis of hepatocellular carcinoma (HCC). However, the underlying mechanism remains largely unknown.
METHODS:
Animal experiments were performed to investigate the metastasis-preventing effects of JR. Bioinformatics analysis and in vitro assays were conducted to explore the potential targets and active components of JR. TDEs were assessed using nanoparticle tracking analysis (NTA) and Western blotting (WB). Exosomes derived from normoxic or hypoxic HCC cells (H-TDEs) were collected to establish premetastatic mouse models. JR was intragastrically administered to evaluate its metastasis-preventive effects. WB and lysosomal staining were performed to investigate the effects of JR on lysosomal function and autophagy. Bioinformatics analysis, WB, NTA, and immunofluorescence staining were used to identify the active components and potential targets of JR.
RESULTS:
JR effectively inhibited subcutaneous-tumor-promoted lung premetastatic niche development and tumor metastasis. It inhibited the release of exosomes from tumor cells under hypoxic condition. JR treatment promoted both lysosomal acidification and suppressed secretory autophagy, which were dysregulated in hypoxic tumor cells. Quercetin was identified as the active component in JR, and the epidermal growth factor receptor (EGFR) was identified as a potential target. Quercetin inhibited EGFR phosphorylation and promoted the nuclear translocation of transcription factor EB (TFEB). Hypoxia-impaired lysosomal function was restored, and secretory autophagy was alleviated by quercetin treatment.
CONCLUSION
JR suppressed HCC metastasis by inhibiting hypoxia-stimulated exosome release, restoring lysosomal function, and suppressing secretory autophagy. Quercetin acted as a key component of JR and regulated TDE release through EGFR-TFEB signaling. Our study provides a potential strategy for retarding tumor metastasis by targeting H-TDE secretion. Please cite this article as: Jia WT, Xiang S, Zhang JB, Yuan JY, Wang YQ, Liang SF, Lin WF, Zhai XF, Shang Y, Ling CQ, Cheng BB. Jiedu recipe, a compound Chinese herbal medicine, suppresses hepatocellular carcinoma metastasis by inhibiting the release of tumor-derived exosomes in a hypoxic microenvironment through the EGFR-TFEB signaling pathway. J Integr Med. 2024; 22(6): 697-709.
Exosomes/drug effects*
;
Animals
;
Carcinoma, Hepatocellular/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Liver Neoplasms/pathology*
;
Tumor Microenvironment/drug effects*
;
Mice
;
Humans
;
Cell Line, Tumor
;
Mice, Inbred BALB C
;
Neoplasm Metastasis
;
Male
;
Mice, Nude
10.USP25 promotes hepatocellular carcinoma progression by interacting with TRIM21 via the Wnt/β-catenin signaling pathway.
Yinghui LIU ; Jingjing MA ; Shimin LU ; Pengzhan HE ; Weiguo DONG
Chinese Medical Journal 2023;136(18):2229-2242
BACKGROUND:
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. The ubiquitin-specific peptidase 25 (USP25) protein has been reported to participate in the development of several cancers. However, few studies have reported its association with HCC. In this study, we aimed to investigate the function and mechanism of USP25 in the progression of HCC.
METHODS:
We analyzed USP25 protein expression in HCC based on The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) database cohorts. Then, we constructed USP25-overexpressing and USP25-knockdown HepG2, MHCC97H, and L-O2 cells. We detected the biological function of USP25 by performing a series of assays, such as Cell Counting Kit-8 (CCK-8), colony formation, transwell, and wound healing assays. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were performed to detect the interaction between USP25 and the Wnt/β-catenin signaling pathway. The relationship between USP25 and tripartite motif-containing 21 (TRIM21) was assessed through mass spectrometry and co-immunoprecipitation (Co-IP) analysis. Finally, we constructed a mouse liver cancer model with the USP25 gene deletion to verify in vivo role of USP25.
RESULTS:
USP25 was highly expressed in HCC tissue and HCC cell lines. Importantly, high expression of USP25 in tissues was closely related to a poor prognosis. USP25 knockdown markedly reduced the proliferation, migration, and invasion of HepG2 and MHCC97H cells, whereas USP25 overexpression led to the opposite effects. In addition, we demonstrated that USP25 interacts with TRIM21 to regulate the expression of proteins related to epithelial-mesenchymal transition (EMT; E-cadherin, N-cadherin, and Snail) and the Wnt/β-catenin pathway (β-catenin, Adenomatous polyposis coli, Axin2 and Glycogen synthase kinase 3 beta) and those of their downstream proteins (C-myc and Cyclin D1). Finally, we verified that knocking out USP25 inhibited tumor growth and distant metastasis in vivo .
CONCLUSIONS
In summary, our data showed that USP25 was overexpressed in HCC. USP25 promoted the proliferation, migration, invasion, and EMT of HCC cells by interacting with TRIM21 to activate the β-catenin signaling pathway.
Animals
;
Mice
;
beta Catenin/genetics*
;
Carcinoma, Hepatocellular/pathology*
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Expression Regulation, Neoplastic
;
Liver Neoplasms/pathology*
;
Ubiquitin Thiolesterase/metabolism*
;
Wnt Signaling Pathway/genetics*

Result Analysis
Print
Save
E-mail