1.The theory and practice of the present teaching evaluation by students in colleges and universities
Chinese Journal of Medical Education Research 2003;0(02):-
The teaching evaluation by college students can benefit the teacher’s improvement on the teaching quality,push forward the efficiency of college administrative office,and ensure the smooth operation of the teaching. This article integrates the specific practical work of the teaching evaluation by college students in our school through improving the system of the teaching evaluation and implementation procedure. It has gained good effects in achieving the promotion of the teaching evaluation by college students and the elevation of teaching quality.
2.lncR-GAS5 upregulates the splicing factor SRSF10 to impair endothelial autophagy, leading to atherogenesis.
Yuhua FAN ; Yue ZHANG ; Hongrui ZHAO ; Wenfeng LIU ; Wanqing XU ; Lintong JIANG ; Ranchen XU ; Yue ZHENG ; Xueqing TANG ; Xiaohan LI ; Limin ZHAO ; Xin LIU ; Yang HONG ; Yuan LIN ; Hui CHEN ; Yong ZHANG
Frontiers of Medicine 2023;17(2):317-329
Long noncoding RNAs (lncRNAs) play a critical role in the regulation of atherosclerosis. Here, we investigated the role of the lncRNA growth arrest-specific 5 (lncR-GAS5) in atherogenesis. We found that the enforced expression of lncR-GAS5 contributed to the development of atherosclerosis, which presented as increased plaque size and reduced collagen content. Moreover, impaired autophagy was observed, as shown by a decreased LC3II/LC3I protein ratio and an elevated P62 level in lncR-GAS5-overexpressing human aortic endothelial cells. By contrast, lncR-GAS5 knockdown promoted autophagy. Moreover, serine/arginine-rich splicing factor 10 (SRSF10) knockdown increased the LC3II/LC3I ratio and decreased the P62 level, thus enhancing the formation of autophagic vacuoles, autolysosomes, and autophagosomes. Mechanistically, lncR-GAS5 regulated the downstream splicing factor SRSF10 to impair autophagy in the endothelium, which was reversed by the knockdown of SRSF10. Further results revealed that overexpression of the lncR-GAS5-targeted gene miR-193-5p promoted autophagy and autophagic vacuole accumulation by repressing its direct target gene, SRSF10. Notably, miR-193-5p overexpression decreased plaque size and increased collagen content. Altogether, these findings demonstrate that lncR-GAS5 partially contributes to atherogenesis and plaque instability by impairing endothelial autophagy. In conclusion, lncR-GAS5 overexpression arrested endothelial autophagy through the miR-193-5p/SRSF10 signaling pathway. Thus, miR-193-5p/SRSF10 may serve as a novel treatment target for atherosclerosis.
Humans
;
Atherosclerosis/genetics*
;
Autophagy/genetics*
;
Cell Cycle Proteins/metabolism*
;
Endothelial Cells/metabolism*
;
Endothelium/metabolism*
;
MicroRNAs/metabolism*
;
Repressor Proteins/metabolism*
;
RNA Splicing Factors
;
Serine-Arginine Splicing Factors/genetics*
;
RNA, Long Noncoding/metabolism*